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PREFACE 

In engineering circles it is common to speak of "inventing the wheel" to 
imply the oldest of developments. And it is true that rotational motion was 
employed-for example, to achieve translation as with the wheel and axle, or to 
store energy as in the sling—in truly ancient devices. 

Much later, in transferring power from one point to another, the use of drive 
belts and related mechanisms and multistep cogwheel (and subsequently, gear) 
trains gave way to the use of drive shafts because of their advantages as regards 
efficiency, wear, and adjustment. Since strength requirements are related to 
the torque carried by such a shaft, and the relationship between torque and ro- 
tational speed is inverse—for a given level of transmitted power—there has been a 
continuing trend toward higher and higher shaft speeds. The dynamic forces of 
rotation, which act on drive shafts, of course, also increase with rotational speed. 
Thus, the problems associated with rotational shaft dynamics have been mcreas- 
ingly important in the field of engineering for the last century. 

The proliferation of devices rotating at high speeds in recent years has brought 
both new problems and a concentration of attention which, in solving one prob- 
lem, has thrown new light on a host of others-sometimes on a puzzling phenom- 
enon or aspect of long standing. The "fly-ball governor," probably the first 
recognizable component with no function other than to provide feedback 
control, depended on rotational dynamics; ultrahigh speed gyros may be con- 
sidered their modern counterpart. Gas turbines have rotational speeds that were 
unheard of only a short time ago, and the closer to those speeds a drive shaft can 
function, the less gearing is required to go from one to the other. Airplane 
propellers and helicopter rotors provide still another class of examples where 
limber structures are subject to problems arising from the complexities of rota- 
tional dynamics. 

In preparing this monograph, the authors and the Shock and Vibration Infor- 
mation Center intended to provide a stock-taking of the knowledge and tech- 
niques accumulated to date and the rotating shaft dynamics problems remaining 
at this time. Because the problems are familiar, in the nonscientific sense, to 
virtually everyone in the scientific and technological fields, but understood rather 
poorly by most-including many mechanical designers directly involved with the 
creation of new rotating systems-the approach taken has been comprehensive 
without attempting to be complete. The early chapters have the objective of 
providing physical descriptions of the simplest examples which could be thought 
of (both conceptually and mathematically) to illustrate the phenomena in 
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question. Later, the mathematical foundations are presented with, hopefully, suf- 
ficient rigor to provide insight into realistic cases and a jumping-off point from 
which one familiar with engineering analysis but not necessarily with rotational 
dynamics can develop a useful capability in this field. Throughout, references to 
the extensive literature are made, along with (mostly unproven) statements as to 
the important phenomena encountered with typical shaft systems. 

While the time spent in preparing this monograph did not allow a really 
exhaustive treatment of any area (references to the literature are depended on 
for that), the chapter on balancing is perhaps the farthest from being complete. 
The authors certainly did not mean to imply, by leaving the chapter in this 
state, that the subject is unimportant. On the contrary, no matter how well the 
theory is developed and how refined the manufacturing procedures, it seems 
likely that some test procedure will always be required, perhaps for every high- 
speed shaft intended for operation where safety is paramount-as, for example, 
in aircraft. 

This subject, however, is undergoing more rapid transition today tiian any 
other covered in the monograph. For example, the whole concept of a "balanc- 
ing machine" may be abandoned, or at least drastically revised, for supercritical 
shafts. The importance of the supporting structure to satisfactory operation 
may require that production shafts be balanced in situ or on an installation 
which closely simulates all the important structural and dynamic properties of 
the frame on which the shaft system is to be supported during its useful life. 
Neither the associated theoretical methods nor experimental techniques are now 
at a stage where they can be summarized with the same confidence as the other 
material in this book. Such developments are, however, "just around the corner"; 
no fundamental advances are required, and analysts, designers, and manufacturers 
in the field are at work to arrive at the needed procedures. 

An extensive bibliography is presented, which includes more than 540 entries. 
These are cross referenced in several forms; for example, by author and by subject. 
In discussing the important phenomena encountered in typical shaft systems, 
references to the extensive literature are made throughout the text to allow the 
reader to pursue the complete, detailed treatments which could not be included 
in this review of the subject. 

The authors gratefully acknowledge the support of W. W. Mutch and H. C. 
Pusey, of The Shock and Vibration Information Center, for enabling this mono- 
graph to be produced and for furnishing advice and guidance throughout the 
progress of the task. Acknowledgment is also due the Foreign Technology Divi- 
sion of the Air Force Systems Command, the Defense Documentation Center, and 
the Scientific and Technical Information Facility of the National Aeronautics 
and Space Administration, for their help in preparing the bibliography. 

Rochester, New York 

ROBERT G. LOEWY 

VINCENT J. PIARULLI 
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CHAPTER 1 
INTRODUCTION 

1.1 Historical Perspective 

The first published work on the dynamics of rotating shafts was presented in 
1869 by Rankine [1]. According to Gunter [2], Rankine's neglect of Coriolis 
acceleration led to erroneous conclusions which confused engineers for half a 
century. Despite its long history-for a technological subject—confusion exists 
even today in otherwise knowledgeable circles regarding aspects of these phenom- 
ena, whose names are familiar to almost all engineers. 

Figure 1 shows the chronological trend begun by Rankine. The rate of 
publication has gone from less than one per year (on the average) for the pre- 
1935 period to 65 per year in 1965 and 1966. This is evidence that the rate of 
growth of interest in the dynamics of rotating shafts has at least kept pace with 
the general growth in technology. 
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2 DYNAMICS OF ROTATING SHAFTS 

The open-literature publications on the subject now total more than 550 
references. The number of contributing authors stands at more than 425. Ap- 
proximately half are not American, the two most prolific authors on the subject 
being Dimentberg and Tondl. 

1.2 General Topical Perspective 

The most extensive portion of the literature on the dynamics of rotating 
shafts is concerned with determining critical speeds and natural frequencies. Over 
the years, most rotating machinery has been designed to operate below the first 
critical speed. One could usually obtain reliable operation by ensuring that the 
highest operating shaft speed would be below the first natural transverse frequency 
of the shaft. (Eliminating the ambiguities in this very statement constitutes an 
important objective of this monograph.) It follows that the earliest papers were 
concerned with predicting first critical speeds and vith balancing shafts for sub- 
critical operations. 

Modern rotating machinery, however, often must operate at very high speeds, 
far in excess of first critical. The more recent literature, therefore, treats a greater 
range of problems and phenomena. Topics such as the proximity of operating 
speed in relation to higher criticals, the extent of unstable regions and stresses, 
during transition through lower criticals are all of practical interest to the de- 
signers of modern rotating equipment. 

The analytical studies of rotor dynamics presented in current papers usually 
deal with systems with a very few degrees of freedom. These papers serve to 
illustrate the basic mechanisms involved in the various phenomena, providing 
generalized, qualitative information on the effects of damping and of other im- 
portant parameters. Their significance should not be underestimated; they not 
only provide rules of thumb for designers, but often are essential to the diagnosis 
of shaft problems in real systems. 

That part of the literature involving more complex mathematical models 
usually concerns the prediction of critical speeds for a particular configuration. 
These analyses jre, therefore, more specific and quantitative in nature; they are, 
in general, representative of the analyses which are virtually a necessity in the 
design of most modern rotating systems. 

1.3 Monograph Overview 

Excluding this introductory chapter and the concluding chapter, the mono- 
graph contains six topical chapters. These are devoted to three main topics: 
lateral motion, coupled lateral and torsional motion, and balancing. The latter 
two are separate chapters. Because the preponderance of existing literature 
treats the fint topic, and because several important subphenomena mus* be 
treated within the context of lateral motion, four chapters are devoted to the 
subject of lateral motion. These attempt to present physical descriptions of the 
phenomena, review important resi 's, introduce the reader to the mathematical 
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foundations, and discuss forced response briefly, in Chapters 2, 3, 4, and 5, 
respectively. 

The scope of this monograph was such that not all of the many references 
could be exhaustively digested and reported. An attempt was made to deal with 
the most important, and these are cited in the text. All references, whether 
perused or not, are listed to produce as complete a bibliography on the subject 
as possible within the time allowed. 

T 



CHAPTER 2 
INTRODUCTION TO THE PHENOMENA. 

LATERAL SHAFT PROBLEMS 

2.1 Fixed and Rotating Reference Frames 

There has always been some confusion as to what the term critical speed means. 
In the early work by Rankine, Dunkerley, and others, it was observed that a 
rotating shaft had certain speed ranges in which deflections of large amplitudes 
were developed. The shaft, rotating in a nonoscillatory-or simultaneously ro- 
tating and oscillating-deflected position, initiated vibrations of the whole sup- 
porting structure and often caused catastrophic failure of some part of the sys- 
tem. Hence, those particularly dangerous operating speeds became known as 
critical speeds. 

From an engineeimg viewpoint, it is necessary to be more precise in defining 
critical speed. Some physical insight is gained by examining simplified cases. 
Consider, for example, a disk rotating on infinitely stiff bearings and shaft, but 
with a mass imbalance. This is shown in Fig. 2. One can place an arbitrary set 
of Cartesian axes (y, z) fixed in space so that the origin is at the bearing-shaft 
axe and another, less arbitrary, set (V, W) with the same originbut having one 
ax; through the center of mass. The latter set obviously must rotate with the 
shaft and disk. If the disk is rotated at a constant speed ft in a horizontal 
plane, so that gravity is normal to the disk, only one force will exist trans- 
verse to the shaft, namely that due to centrifugal force, mü2e. The shaft 
will experience this as a steady force in the (rotating) direction V. The outer 
nonrotating races of the supporting bearings will experience sinusoidally varying 
forces 

{mÜ2e) cos nt in the y direction. 

(wn2e) sin fir in the z direction. (2.1) 

This differing view of the same phenomena, depending on whether the vantage 
point is the fixed or the rotating system, is illustrative of the complicating factors 
in shaft problems and probably accounts for much of the confusion regarding 
critical speeds. 

.■'■■■:■ f-r^:--- 
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lig. 2a. Disk of mass m, with mass offset 
distance a, on perfectly rigid shaft and 
bearings. 

Fig. 2b. Mathematical model of disk 
in Fig. 2a for problems where polar 
mass moment of inertia is unim- 
portant. 

2.2 Instability 

To emphasize the foregoing points further, consider now that the disk of Fig. 
2 is perfectly balanced but contains a frictionless, radial slot, in which there is a 
mass m, restrained by a spring with rate k as shown in Fig. 3. The radial equilib- 
rium of forces on the mass could result from a balance of centrifugal and elastic 
forces, thus 

mSl2ie + v) = kv 

or 

mn2e 
k-mSl7 

mtt2 -1 
(2.2) 

From this it can be seen that the elastic deflection v will be unbounded for any 
finite initial deflection e if the rotational speed J2d = \/k/m. It is noted that this 
rotational speed happens to coincide with the nonrotating natural frequency of 
the mass on its restraining spring o}h. The absence of radial acceleration terms 
in Eq. (2.2), however, makes it clear that this divergence is a static phenomenon. 
One is likely to agree that S2d is a dangerous speed, perhaps even "critical"; 
resonance, however, is clearly not involved. 

If the mass is considered to be oscillating radially about a mean position 
e = 0 in a free vibration, Newton's second law yields* 

♦All tangential accelerations and forces (C'onolis and others) are put in equilibrium by the 
"slot." 
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Fig. 3.   Rotating disk containing a spring- 
restrained mass in a radial slot. 

mv - kv + mJ22v 

or 

v + 
m ~"2)V = a 

The rotating natural frequency (viewed in the rotating system) is 

CO "R ^-"'M7'- (2.3) 

Hence, the divergence speed fid occurs when the rotating natural frequency- 
viewed in the rotating system-is zero. 

The solution for the vibrating motion v will satisfy the equation of motion 
above if 

v = v0.e i"nRt 

This shows that if n>nd = y/k/m one of the two terms in the solution will di- 
verge. Thus, £2d represents the borderline of a semi-infinite region (i.e., from 
n = I2d to SI = «O of statically divergent instability. While fid is, as mentioned 
earlier, a "critical" speed, this is not what is normally referred to as a critical 
speed in the literature. 
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2.3 Apparent Change in Frequency 

Before examining a simple example of the phenomena which are traditionally 
thought of as critic 1 spe'- Js, it will be helpful to note that if we picture the 
slotted mass oscillating freely when the shaft is running below the unstable range, 
i.e., when f2 < J2C, and choosing, arbitrarily, the maximum amplitude v0 to occur 
when r = 0, then 

V = VQ cos (co,,^)- 

But now the oscillatory displacement v instantaneously causes radial forces 
analogous to the radial forces of Eq. (1), so that we can write for the forces in 
the support bearings the equations 

y direction 

(A:v) cos S2r = fcv0(cosw„Är cosJ2r) 

kv 
- —^ • cos {unR + Sl)t + cos (CJ„ä - Sl)t (2.4) 

z direction 

{kv)s,inW = kv^cosun^t sin J2/) 

= ^|sin(u„Ä +n)r - sin(u),lÄ -Sl)n. 

From this it is seen that an oscillatory mass motion of frequency a;„„ in the 
rotating system causes oscillatory forces at frequencies 

u„R ± n 

in the fixed system. When n = nd, i.e., the speed for borderline stability, CJ„„ is 
equal to zero, so in the fixed system the mass appears to be oscillating at the 
rotational speed fi = J2d. 

2.4 Critical Speed 

Returning to the original disk without a slotted mass but with mass imbalance, 
suppose that rather than having a rigid shaft on rigid bearings, the rigid shaft is 
mounted in flexible supports as shown in Fig. 4. Here the y, z axes, in addition 
to being nonrotating, are also fixed at the undeflected bearing position. This 
system may be viewed in the y, z frame of reference as a mass m with two 
(uncoupled) degrees of freedom excited by forces as given in Eq.(2.1). Now suppose 

-'T'V1 
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BEARING AND DISK, 
GEOMETRIC CENTERS 

MASSLESS. FRICTIONLESS 

Fig. 4. Disk with eccentric-mass center on an 
inelastic shaft and flexibly mounted bearings. 

] kz= kv = k, and £2= Slc -ykfm ; i.e., the undamped natural frequency as viewed 
in the fixed system. The forcing functions then drive each degree of freedom at 
resonance, one 90° from the other. In the absence of damping, the amplitudes 
will grow without limit; that is, the solutions will be 

v = —^ {A + t) sin Slct + B cos nef 

and 

z = 
-n.e 

C4' + 0cosncr 
+ 5'sinSV, (2.5) 

I 

where A, A', B, and B' depend on the displacements and velocities of j and z 
at time r = 0. The sum of the two translational motions is a diverging spiral, so 
that the postulated n = fic is also a "critical" speed, and also is numerically equal 
to an undamped natural frequency. In this case, however, where fi > S2C, the 
motion is bounded. Thus, the hazardous speed Slc will result in a whirling di- 
vergence which in the rotating reference frame is linear with time* and occurs 
only at the one specific rotational speed Q. = fic. By comparison, the slotted 
mass case (Fig. 2) involves a hazardous speed J2d beyond which there will be a 
whirling divergence which, in the rotating system, is exponential with time and 

(enc)l2{A + t), for example, if A - A, B = B = 0. Note *The polar amplitude vv^ + z* = 
that in theory it is possible to have more than one natural frequency with the same value, 
so that nc could ^ave not only t but f2 and /3 divergencies. In practice this is virtually im- 
possible, since manufacturing tolerances preclude the absolute absence of coupling between 
modes required for two equal natural frequencies. 

""  "^-^^H!^!H-■■?^r^^^ 



10 DYNAMICS OP ROTATING SHAFTS 

is more or less rapid depending on how far the unstable range defined by fl > fi^ 
is penetrated. Note that the change in frequency by ±J2 which occurs in going 
from fixed to rotating systems and vice-versa (illustrated by Eq. (2.4)) means that 
at Üc the motion appears in the rotating system as a static divergence. 

The literature is reasonably consistent in calling phenomena such as are as- 
sociated with J2C "critical speeds" and those associated with ranges such as 
£l> Q,d "instabilities." Although these definitions will be adhered to from this 
point on in the text, the foregoing discussion has attempted to show that they 
are in fact arbitrary, since both phenomena are associated with rotational speeds 
which are critical and both result in the kind of divergent motion associated with 
instability. 

2.5 Shaft Flexibility vs Mount Flexibility 

To examine more realistic shaft configurations, consider a disk mounted on a 
massless, elastic shaft constrained to motion in the y, z or V, W plane. The 
mathematical model now is that shown in Fig. 5b. The bearings in which the 
shaft runs are now taken to be at the origin, and the shaft is assumed infinitely 
stiff in torsion. Thus, while the V axis no longer passes through the mass center, 
it still rotates along with »he disk with no loss of angular motion. The transverse 
(bending) flexibility of the shaft, however, allows translational motion of the 
disk in the plane of rotation, which may lag the shaft rotation by an angle 0, as 
shown in Fig. 5a; lead it, as shown in 5b; or be coincident with it, as shown in 5c 
and d. In these figures, of course, the effect of shaft bending is projected into the 
plane of the disk and represented as the motion of a linear spring. If the shaft 
bending rigidities are not polar-symmetric, then there would be different elastic 
restoring forces among Figs. 5a, b, and c, even though the magnitude of the dis- 
placements in the direction of the schematic linear spring were all equal. For a 
shaft infinitely stiff in the direction IV, with finite flexibility in the direction V, 
as shown in Fig, 5c, the system is very much like that of Fig. 3, described by 
Eqs. (2.3) and (2.4). One might expect from this that shafts with significant dif- 
ferences in stiffness in two directions would be subject to instabilities. 

Flexibility effects in the shaft bearings and/or supports, as shown in Fig. 4. 
and those due to the shaft's elastic properties as shown in Fig. 5, are clearly quite 
similar. If the «haft of the latter figure has polar-symmetric stiffness, and if the 
bearing/support spring rates of the former are isotropic, these two-dimensional 
(planar) descriptions become interchangeable. For example, if the shaft whirled 
about its bearing centers in a circular motion the spring in Fig. 5 would provide a 
steady radial force; the springs ky = kz in Fig. 4 would provide the same steady 
resultant radial force. Since springs are, by definition, nondissipative mechanisms, 
the fact that the latter would be individually oscillating is of no consequence. 
This suggests, of course, that shafts with flexibility are subject to critical speeds 
such as described by Eq. (2.5) for the case of rigid shafts on flexible mountings. 

:¥SSj 
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BEARING 
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Fig. 5. Possible configurations for steady 
motion of a disk with eccentiic mass on a 
massless elastic shaft. 

2.6 Shaft Damping vs Mount Damping 

Using Figs. 4 and S, it is not difficult for us to imagine the effect of damping. 
Structural damping in the shaft is representable as a (radial) damper, in parallel 
with the springs in Figs. 5a through d. The damping forces that might arise from 
friction elements in parallel with the springs ky and kz in Fig. 4, however, 
whether Isotropie or not, act on the shaft in a manner very different from fric- 
tion in the rotating shaft itself. As has been mentioned in comparing shaft 
flexibility effects with those due to bearing/support flexibility, a constant- 
amplitude, circular whirl would cause no oscillation in the shaft spring of Fig. 5c, 

-ii .'.v-.■ >•.•■•',■; 



12 DYNAMICS OF ROTATING SHAFTS 

but would continuously cycle the springs in Fig. 4. Clearly, dampers in parallel 
with the springs in the latter figure would be a powerful dissipative medium, 
whereas a damper parallel to the spring in Fig. 5 would do nothing in the pos- 
tulated motion. 

2,7 Effects of Gravity 

If the shaft and disk representation of Fig. 5 were turned until the shaft axis 
were horizontal and the disk balanced, then the force of gravity would become a 

transverse excitation source, as shown in 
Fig. 6. While gravity appears as a con- 
stant force in the negative z direction, it 
appears in the rotating system as sinusoidally 
varying with the frequency of rotation, 
that is 

-mg sin J2r      in the V direction. 

r Fig. 6.   Balanced disk on a mass- 
less, horizontal elastic shaft. 

and (2.6) 

-mg cos ilt     in the W direction. 

This is analogous to the manner in which centrifugal force, steady in the rotating 
system, appears as a first harmonic sinusoidal force in the fixed system. 

2.8 Progressive-Regressive Whirl 

When transverse shaft vibrations occur in two mutually perpendicular planes, 
the frequency and phasing between such motions at a given point along the shaft 
length will determine a plane closed curve often called a Lissajous figure. When 
the frequencies of vibration are the same in the two planes, figures such as those 
shown in Fig. 7 occur. Such vibrations can occur in either the fixed or the 
rotating system. If they occur in a rotating frame of reference and with other 
than zero phase, the shaft center line will appear to rotate, as shown in Figs. 7b 
and c. When this apparent rotation is in the same direction as the true rotational 
velocity of the shaft, the shaft is said to be in a forward, advancing, or progres- 
sive mode. When the apparent rotation, viewed in the rotating system, is in the 
opposite direction to that of true shaft rotation, it is said to be vibrating in a 
reverse, backward, or retrogressive mode. 

It is noteworthy that in much of the literature the term forward whirl is used 
to describe the classical shaft critical speed phenomenon, which—it should now 
be clear-is a limiting case of zero apparent rotation of the shaft center in the 
rotating system. There are other more complex phenomena, however, in which 
the forward or backward precession, as viewed in the rotating system, occurs at 
integer multiples of rotational speeds. If, for example, there is a backward mode 
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^ 

>' a tin «t 
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I'ig. 7. Lissajous figures traced by a point 
on a shaft at a given longitudinal station 
undergoing transverse vibratory motions at 
the same frequency on two planes. 

at twice rotational speed in the rotating system, this would appear as a "backward 
whir!" in the fixed system at the shaft rotational speed. Such cases, which may 
be or may only appear to be resonan« depending on the source of the exciting 
force, are discussed further in Chapter 3, Section 3.1. 

2.9 Summary 

This discussion has attempted to define critical shaft speeds, shaft instabili- 
ties, and related effects, and to illustrate some important aspects of the phenom- 
ena by examining simplified cases. The change of observed frequency by ±Sl 
when a lateral vibratory phenomenon in nonrotating coordinates is viewed in the 
rotating system (or vice versa) has been singled out as a potential source of con- 
fusion. This effect, of course, includes zero frequency as a degenerate case. 
Thus, critical speeds which appear as once-per-revolution vibratory resonances in 
the fixed system are static divergences in the rotating system; thus, strain gages 
on the rotating shaft in this situation would indicate nonoscillatory stresses. 
Borderline stabilities, showing the onset of static divergencies in the rotating 
system, may exhibit the same frequency as resonant vibrations in the fixed sys- 
tem. The important distinctions, then, between the two phenomena are that 
critical speeds occur only at discrete values of shaft speed and diverge linearly 
with time; shaft instabilities occur within a range of operating speeds and diverge 
exponentially with time. 

■^ 



14 DYNAMICS OF ROTATING SHAFTS 

For a rotating shaft there normally exists a number of possible sources uf 

unstable motion. Internal damping, lack cf symmetry in the rotating parts, and 
oil films in journal beaiings, each may give rise to an instability. The amplitude 
of the resulting, self-excited vibration may very often be greater than that due 
to the resonance vibration of incorrectly balanced rotors. Furthermore, there is 
the added danger of cyclic stresses in the shaft. 

All these matters will be addressed with more mathematical rigor in Chapter 
4. Having made the physical introduction of the preceding paragraphs, however, 
it will be helpful to review some well-accepted results from the cumulative ex- 
perience of researchers in this field. 



CHAPTER 3 
BRIEF REVIEW OF EXPERIENCE: 

LATERAL SHAFT PROBLEMS 

In this chapter certain general results of importance from the literature are 
summarized as regards the phenomena, their classification, and prediction meth- 
ods. Further summaries of results from the literature, which seem to require the 
presentation of mathematical foundations as prerequisite to a reasonable discus- 
sion, are contained in Chapter 4. 

3.1 General 

In most shaft systems dissipative (i.e., damping) forces in both fixed and ro- 
tating components are small compared to inertial and elastic forces. Further- 
more, shaft flexibility is usually polar-symmetric ind bearing supports are either 
relatively rigid or nearly Isotropie; thus, the equivalence of Figs. 4 and 5 (dis- 
cussed in the previous section) makes excitation of the shaft at its natural fre- 
quency in the fixed system by the once-per-revolution excitation of mass imbal- 
ance the usual case. Viewed in the rotating system, the steady forces due to 
mass imbalance are "resonant" with the zero natural frequency of the rotating 
mode of the shaft system. 

Alternative terminologies often found in the literature for this kind of phe- 
nomena are "critical angular velocity for synchronous precession," "critical 
speed of forward precession," and "critical whirling speed." Some authors simply 
refer to "natural frequencies," but risk the possibility of misunderstanding. For 
example, the natural frequencies of a nonrotating shaft will not always be close 
to the critical speeds. In general, the natural frequencies of a rotating shaft are a 
continuous function of the operating speed. It is true that often the dependence 
is weak, but there are also cases where the natural frequencies of the rotating vs 
the nonrotating shafts may be very different. A common example occurs when 
mass moments of inertia about axes transverse to the shaft are large relative to 
that of the shaft cross section. 

The excitation frequencies which cause other resonance phenomena in shafts 
are usually integral multiples of the operating speed. These cases, which are re- 
lated to but different from basic shaft critical phenomena, occur when that in- 
tegral multiple of the operating speed equals a natural frequency or, equivalently, 
when the operating speed is equal to a natural frequency divided by that integer. 
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The particular case where gravity acts on a horizontal shaft is, as discussed 
previously, an example in which the frequency of the exciting force is zero in a 
stationary coordinate system, but once per revolution in the shaft system. Thus, 
a resonance could be anticipated when the natural frequency of the rotating 
shaft as measured in the rotating system is equal to the rotational speed. The 
critical speed due to gravity is a so-called critical speed of the second order which 
occurs at an operating speed approximately equal to 1/2 the first normal critical 
speed. It is interesting to note, however, that a true secondary critical speed will 
not exist unless the shaft is one with unequal stiffnesses about axes 90° from 
one another. If the shaft stiffness is Isotropie, then, under steady operating con- 
ditions, there will be a constant shaft deflection due to gravity, but no resonance. 

Another often-mentioned rotating shaft phenomenon is that of reverse pre- 
cession. This term is used to describe a situation where the shaft center viewed 
in the fixed system follows a path whose direction of rotation is opposite to that 
of the true shaft rotation and at the same speed. This can be a resonance if there 
is an exciting force whose vector rotates with the same frequency as the rotational 
speed but in the opposite direction. It is generally much more difficult to excite 
reverse whirl than resonance due to imbalance or gravity. Eubanks and Eshleman 
[3] mentioned that Lowell [4] was able to excite backward whirl (reverse preces- 
sion) with pulsating torques. Dimentberg [5] shows that mass imbalance may cause 
a shaft center line to precess in a direction opposite to that of the shaft rotation, 
but with the same speed, provided that the support elasticity is different in two 
directions perpendicular to the shaft. This occurs at operating speeds between 
two classical, forward-whirl critical speeds and is not a resonance phenomenon. 

Certain shaft system characteristics have been alluded to in preceding para- 
graphs; among them shaft and bearing stiffness and damping, disk eccentricity, 
and mass moment of inertia. It is well, however, to consider the parameters im- 
portant to rotating shaft dynamics from a fundamental viewpoint. 

There are two classes of effects to be considered: linear and nonlinear. Table 
1 tabulates system parameters of consequence according to these two classes. 

Table 1. Classification of Effects of Sy&tem Parameters on Critical Speeds 

Linear Nonlinear 

Imbalance Bearing clearance                                    | 
Axial force and constant torque Coulomb friction and hydraulic damping 
Gyroscopic moments and rotary Oil film effects in journal bearings 

inertia 
Linear elastic restoring forces, Nonlinear elastic restoring forces 

including transverse shear 
Viscous damping Electromagnetic forces                            | 
Rotating and nonrotating Faulty mountings, shrink fit, and defor- 

asymmetry mation of ball-bearing races                 j 

tpi 
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A linear system typically has a certain set of fixed natural frequencies and 
vibration modes. The steady response to periodic excitation is unique; at a 
natural frequency, the system amplitude grows with time to a finite amplitude 
for nonzero damping, and linear resonance is said to occur. 

Nonlinear systems differ in two respects. First, the amplitude-frequency re- 
lationships are not in general unique, i.e., single valued. The second and more 
important effect is that additional resonances can appear, apart from those ap- 
proximately predicted by the linear analysis. 

3.2 Influence of Certain Parameters: Linear Effects 

Axial Force and Constant Torque 

Southwell and Gough [6] concluded in 1921 that critical speeds are signifi- 
cantly affected by either constant axial force (compression) or constant torque. 
They found that the effect of both of these parameters is to lower the critical 
speed. These results were viewed as refuting Greenhill's [7] earlier conclusion 
that these effects are unimportant. 

The subject, however, is not yet closed. N. Willems and S. M. Holzer, in a very 
recent paper [8], concluded that the effect of torque on the critical speed of a 
shaft is small for practical ranges of shaft parameters. On the other hand, Eshle- 
man and Eubanks [3] state that constant axial torque does have a significant 
effect on the critical speeds of slender rotors, and their experimental studies con- 
firm this. 

One of the most important experimental results of Eshleman and Eubanks' 
work was that if an oscillatory torque is superimposed upon a steady torque, the 
system has at least one region of unstable lateral motion. This result is discussed 
again in Chapter 4, under instabilities. 

Gyroscopic Effects and Rotary Inertia 

The influence ot gyroscopic effects on the critical speeds of rotating shafts 
has been studied by many authors. Tondl, Dimentberg, Green, Eubanks, and 
Eshleman are a few of the most notable contributors. The latter pointed out that 
the gyroscopic effect may increase or decrease the critical speeds significantly, 
depending on the operating speed, the size and geometry of the gyroscopic disks, 
and the location of the disks on the rotating shaft. 

It is important to note that the terms gyroscopic effect and effect of rotary 
inertia are very often confused in the literature. The gyroscopic moment is pro- 
portional to the time rate of change of the shaft's transverse angular deflection 
and its direction is 90° from that of the transverse angular velocity. Thus, to ac- 
count for the gyroscopic influence of the mass moment of inertia of shaft cross 
sections or attached disks, it is necessary to consider the simultaneous bending of 
the shaft in two planes. It follows from the two-plane aspects that the polar mass 
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moment of inertia about the shaft center line is the parameter of importance to 
gyroscopic effects. 

In contrast, the rotary inertia effect can make itself felt with just transverse 
angular deflections; i.e., it is a steady phenomenon when viewed in the rotating 
system. Furthermore, the resulting moment acts in the same plane as the deflec- 
tion angle. The single-plane character of the rotary inertia effect is associated 
with the fact that the mass moment of inertia about an axis normal to the shaft 
center line is the important property of these phenomena. In general one can state 
that the moments arising from transverse bending angular deflections and centrif- 
ugal force tend to stiffeii the shaft proportionably to the shaft angular velocity 
squared. Those resulting from transverse angular acceleration, which for this 
purpose may be viewed as a variable independent of shaft angular velocity, tend 
to lower the natural transverse bending frequencies; such terms are proportional 
to that natural frequency squared. Thus, when the bending natural frequency of 
a rotating shaft is higher than the rotational speed, increasing the corresponding 
mass moment of inertia will lower that natural frequency, and reducing the mass 
moment of inertia will raise that natural frequency. The opposite results are ob- 
tained for frequencies lower than the rotational speed. 

If one is concerned with fonvard whirling due to the mass imbalance of an 
isotropic shaft on, say, rigid supports, then, in a coordinate system fixed in the 
shaft, the deflections and angles are constant and independent of time. For such 
motion, the gyroscopic effect cannot influence the classical critical speeds of 
forward whirling. The true gyroscopic effect can influence the critical speeds of 
backward whirl or of forward whirl, provided there exist anisotropic supports or 
some other mechanism for causing the displacement and angles (as measured in 
the rotating frame) to vary instantaneously with time. 

Transverse Shear Deflections 

Deflections due to transverse shear become more important in the calculation 
of critical speeds-just as in any beam problem-when the diameter of a shaft 
becomes significant relative to its length. According to Eshleman and Eubanks, 
this effect can be significant for critical speed phenomena when the diameter of a 
shaft is only as large as one hundredth of the length. 

Transverse shear, gyroscopic, and rotary inertia effects also play a rather un- 
usual role in explaining one of the paradoxes associated with critical speeds. A. 
Tondl [9], in treating the critical speeds of a rotor with uniformly distributed 
mass, shows that if the rotary inertia and gyroscopic terms are neglected, there is 
an infinite number of critical speeds in both forward and reverse precession. On 
the other hand, if the rotary inertia and gyroscopic terms are included, there is 
an infinite number of critical speeds in reversed precession, but only a finite 
number in forward precession. Now, if the continuous system is approximated 
by n disks separated by massless elastic sections, there will be n critical speeds for 
forward precessions and n for reverse precessions.  This must still be true as the 
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number is made arbitrarily large, and one would suppose that in the limit as 
n-*00, the continuous system would be approached. Why, then, does the con- 
tinuous-system approach not always give an infinite number of critical speeds? 
This question was answered by Dimentberg [5], who proved that the paradox 
results from neglecting shear deformations in formulating the bending equations 
for an elemental shaft section. 

Rotating and Nonrotating Asymmetry 

The presence of asymmetry in either the rotating or nonrotating frame of ref- 
erence generally doubles the total number of critical speeds, as compared to the 
fully symmetric case with the critical speeds occurring in pairs corresponding to 
each mode. From a mathematical viewpoint, the equations of motion of an ideal- 
ized shaft system can be in the form of linear differential equations with constant 
coefficients, when expressed in the frame of reference which possesses the 
asymmetry. If, in each case, the alternative frame is used, the equations of motion 
are linear but with periodic coefficients. 

With a knowledge of these results one might suppose that, when there is 
asymmetry in both frames, there might be four critical speeds while the fully 
symmetric system has one. This supposition turns out to be basically correct 
and will be discussed at greater length subsequently. One can also conclude, again 
correctly, that for cases of unsymmetric shafts on unsymmetric supports, there 
is no possible frame of reference in which the equations of motion have constant 
coefficients. This is unfortunate because the existing mathematical methods for 
handling linear differential equations with periodic coefficients are more complex 
than for constant coefficients and are unfamiliar to many engineers. 

Some early contributions to the understanding of critical speeds of unsym- 
metric shafts operating on unsymmetrical supports were made by Smith [10]. 
He discussed critical speeds as well as other unstable motions of a flexible shaft 
operating in flexible bearing supports, and showed that there are four critical 
speeds in the region where a similar, symmetric shaft/bearing system has only 
one. In addition, however, he discussed the presence of other minor critical 
speeds for which periodic motion is possible, with the operating speed in the 
neighborhood of an integral fraction of the natural frequency of a nonrotating 
symmetrical system. Periodic motions associated with odd integral fractions of 
natural frequency can be excited by steady forces in the rotating system, such as 
caused by imbalance, although the amplitudes will usually be small. Periodic 
motions in the range of even integral fractions of a nonrotating natural frequency 
can be excited by a steady disturbing force in the fixed system, such as gravity. 
With an operating speed of one-half of a nonrotating natural frequency, for ex- 
ample, the criticals are in the neighborhood of the classical secondary critical 
speeds associated with a nonsymmetric shaft. 

Smith also discussed [10] the additional critical speeds arising from the gyro- 
scopic effects of attached disks, when both  the  shaft and supports are 
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asymmetrical. The introduction of asymmetry has an effect on the distribution of 
critical speeds arising from moments of inertia about transverse axes similar to 
that on the more basic critical speeds. Smith pointed out that those critical 
speeds associated with lateral moments of inertia corresponding to forward pre- 
cession may not exist for short rotors. For example, a very thin disk attached 
to a massless elastic shaft would not introduce an additional forward critical 
speed, although it may modify the critical speed associated with motion of the 
center of mass. 

About ten years after the Smith paper, Foote, Poritsky, and Slade [11] also 
considered the combined effects of asymmetry in both the rotating and nonro- 
tating parts of a shaft system. Their concern for these effects was with applica- 
tion to two-pole turbogenerators. In this paper, they claimed that Smith missed 
one of the unstable intervals in the immediate vicinity of the critical speed of the 
system with asymmetry set equal to zero. Crandall and Brosens, however, re- 
ported in 1961 [12] the results of research on a problem similar to that studied 
by Foote, Poritsky, and Slade. Their analysis contains the additional complicat- 
ing factor of gyroscopic coupling, but the essence of their results was not essen- 
tially different from that of their predecessors of two and three decades earlier. 

Finally, Tondl [9] treated the almost identical problem using a different 
mathematical approach. His results are also not different from those predicted 
by Smith. In addition to treating the problem of a shaft having stiffnesses dif- 
ferent in two directions, on supports which have different stiffnesses in two direc- 
tions in the presence of external friction, he accounts for the mass properties of 
the flexible supporting structure. Additional critical speeds are shown to exist 
because of the degrees of freedom of the support itself. 

3.3 Influence of Certain Parameters: Nonlinear Effects 

The mathematical difficulty of nonlinear system analysis has hindered the 
development of a theory for nonlinear vibrations of all kinds, and the theory of 
rotating shaft dynamics is no exception. The crucial aspect, of course, is that 
nonlinear equations eliminate the use of the superposition principle. 

In rotating shafts there are various causes of nonlinearity, some of which are 
weak and others strong. The action c. ehe oil film in journal bearings has a fun- 
damentally nonlinear nature. On the other hand, the elastic restoring forces pro- 
vided by a deflected shaft or a supporting foundation may usually be considered 
linear for tolerable deflections. 

Other common sources of nonlinearity are clearance in bearings, magnetic 
force between rotor and stator, and elastic restoring forces due to the deformation 
of ball-bearing races. 

The most fruitful work in the area of nonlinear resonance has been done with 
some variation of the small-parameter approach. Yamamoto [13], Hayashi 
[14], and Tondl [IS] have made significant contributions to the theory of non- 
linear  resonance vibrations in rotating shafts, and each has resorted to a 

9 .■- i 

■ .'.<r ■     .-, . .'V •tfi--- l " , 



BRIEF REVIEW OF EXPERIENCE: LATERAL SHAFT PROBLEMS 21 

small-parameter approach. Tondl concerned himself most with the nonlinearity 
arising from the action of the oil film, which he simulated by a nonlinear spring 
support. In his analysis he considered a symmetrically located disk on a massive 
support, so that there are two degrees of freedom and two classical critical speeds 
for the linearized system. His theoretical results show that, in addition to main 
resonances (which degenerate to the critical speeds in the linear case), there may 
exist subharmonic resonances and what are called internal and combination 
resonances. 

3.4 Prediction Methods 

The majority of references dealing with the dynamics of rotating shafts are 
concerned with qualitative aspects of the problem rather than with analytical or 
numerical procedures for design purposes. These qualitative studies are facilitated 
by working either with systems which have only a very few degrees of freedom, 
or with those which are uniform, simply supported, symmetrical, and straight. 
In either case, the characteristic equations which define the critical speeds are 
usually found in a straightforward fashion, and the process of predicting critical 
speeds presents no real problem. 

Real-world problems are usually less than ideal, and it is necessary to have a 
convenient computational method for predicting critical speeds. It has been 
mentioned earlier that natural frequencies are generally a function of operating 
speed. It has also been pointed out that, if the gyroscopic and moment of iner- 
tia effects are neglected, the natural frequencies of the system as measured in the 
fixed frame will be independent of operating speed. It is this fact which accounts 
for the use of critical speed calculation methods which were originally intended 
for finding the natural frequencies of nonrotating, beamlike structures. 

The methods which have been employed are summarized as follows: 

• The Rayleigh method 
• The Ritz method 
• The Prohl or Myklestad method or transfer-matrix approach 
• The force-displacement method or influence coefficient method 
• Dunkerley formulas 
• Impedance-matching method. 

The most classic of these approaches is the Rayleigh method. In this method, 
one assumes a deflection shape and that the system is oscillating through these 
deflections sinousoidally at an unknown frequency. The corresponding maximum 
kinetic and potential energies are then calculated in terms of the unknown fre- 
quency. Equating the maximum kinetic and potential energies allows this fre- 
quency to be evaluated, and it corresponds to the approximate first natural 
frequency. 
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In actuality, there is no true vibration of the rotating shaft for the critical 
speed usually sought in these calculations, and those using this approach should 
realize that they are depending on the numerical equivalence of natural frequency 
and critical speed as discussed in Chapter 2. The difficulties of the Rayleigh 
method are well known; it is usually good only for the first natural frequency and, 
therefore, the first critical speed. 

The Ritz method [16] improves on the basic Rayleigh method by using more 
than one deflection shape, each of which satisfies the boundary conditions, and 
each of which is as close to orthogonal* to the others as possible. A variational 
principle is employed which ensures that the relative contribution of the assumed 
mode shapes will be determined so as to satisfy equilibrium (i.e., Lagrange's 
equations). This method not only gives the first critical, but as many criticals 
as one assumes mode shapes. Successively better approximations to the lower 
criticals are obtained by assuming more and more modes. It can be shown that 
the Ritz and Rayleigh methods always give a first frequency (or critical 
speed) which is higher than the exact solution for the same physical sys- 
tem. 

The Prohl or Myklestad method has been widely used, and in its more modern 
form is known as a transfer-matrix approach [17]. In this method, the general- 
ized forces and displacements (i.e., forces, moments and torques, and transla- 
tions and rotations, respectively) at one end of a shaft system are related to those 
at the other end by means of successive multiplications of matrices, which ac- 
count for the effects of the stiffness and inertia properties of the various sections 
of the system. This technique yields as many critical speeds as, and to the degree 
of accuracy determined by, the number of stations into which the shaft is 
divided. It is especially suitable for machine computation. This technique has 
been used to compute both the natural frequencies as a function of operating 
speed and the forced response due to unbalanced loads. 

The force [18] and displacement methods [19] are matrix techniques for 
determining structural influence coefficients, which in turn can be used in the 
dynamic matrix iteration method to give all the critical speeds. Generally, but 
not necessarily, the higher mode accuracy depends on the accuracy with which 
lower modes are obtained. However, the choice between the transfer-matrix and 
matrix-iteration approaches is a matter of personal preference, to a large 
extent. 

The Dunkerley [20] formulas for getting approximate values of the first 
critical speed are in fairly common use. The general idea here is to determine the 
first critical speed of a system from a knowledge of the critical speeds of smaller, 
less complex subsystems. Fernlund [21] pointed out that the standard Dunkerley 
formulas are approximate, even if the gyroscopic effect and the distributed mass 

•"Orthogonal" here implies that the inertial forces in one mode will do no net work when 
they act through the deflections of the other mode. 
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of the shaft may be neglected, except for a shaft which carries only one concen- 
trated mass. Fernlund has developed an improved Dunkerley formula which 
gives better results. In either case, however, great care should be exercised in 
making use of these formulas, since they are generally only first approximations. 

Finally, one of the most successful approaches is the use of impedance- 
matching methods [5, 22]. In this case, natural frequencies or critical speeds are 
obtained from a knowledge of the impedances of the component parts of a 
system. 

I 
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CHAPTER 4 
MATHEMATICAL FOUNDATIONS: 

LATERAL SHAFT PROBLEMS 

I 

The purpose of this chapter is to discuss both resonantly forced and unstable 
lateral motion. 

The critical speed of a rotating shaft was defined earlier as a resonant phe- 
noinenon, i.e., one in which the applied force reinforces the system's response 
by occurring at the natural frequency. Mathematically speaking, natural frequen- 
cies arise as eigenvalues of the governing equations, with the terms independent 
of motion (the forcing functions) equal to zero. Physically, they imply free, 
undamped motion; i.e., frictionless, in vacuo, and with no applied forces. All 
the natural frequencies of a rotating shaft are more or less dependent on the 
operating speed of the shaft. Since a forcing function in this case can be the 
mass imbalance, and since it occurs (viewed in the nonrotating system) at a fre- 
quency equal to the rotational frequency, then when a rotating natural frequency 
(viewed in the fixed system) is also equal to the rotational frequency, that 
operating condition will be a critical speed. 

A simple model of a rotating shaft, which is employed by almost all researchers 
in this field at one point or another, is a disk located at the center of an elastic, 
massless shaft.  Both ends of the shaft are assumed to be identically supported. 
Figure 8 illustrates this simple system. 
It is customary in dealing with this model 
to assume that the disk remains in one 
plane, so that gyroscopic effects do not 
manifest themselves.    This requires, of 
course, that the imbalance (or, for that 
matter, any disturbance along the shaft 
system) always occurs symmetrically with 
respect to the disk. 

Even with these simplifying assump- 
tions, this model allows an investigation 
into the effects of many different shaft 
characteristics on critical speeds and 
instabilities. 

The equations of motion of the system shown in Fig. 8 are easily derived. 
Here, the disk center of mass is assumed to be offset a distance a from the center 
of the shaft, and internal damping is included. 
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DISK WITH OFFSET CENTER OF MASS 

Fig. 8.   Simple model of a rotating 
shaft. 
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It is convenient to introduce a coordinate system which rotates with the shaft 
at an angular speed $1 (Fig. 9). Letting (v, u')be the coordinates in the rotating 

frame of the shaft center, the position vector 
from the origin to the center of mass is given 
by 

r = (a + v)j + wk. (4.1) 

Alternatively, in the fixed system of co- 
ordinates, 

*-|}<y 

Fig. 9.    Fixed and rotating 
coordinate systems. 

r = (y + a cos nt)Py 

+ (2 + a sin Slt)ez, (4.2) 

where (v, z) are the fixed-system coordinates of 
the center of the shaft. 

After properly differentiating the position vector twice, the acceleration of 
the mass center results: 

r = (i>'-n2v-2üw-n2a)i + (vv-n2w + 2nv)k 

= (v-an2 cosnt)ey + (z'-aQ,2 s\nüt)e:. (4.3) 

One force acting on the system is the elastic restoring force, given by 

= -K{yey + zc2). (4.4) 

The internal friction force is given by 

// " -cAH + wk) 

= -qtCv + fiz)*.. + (i-n.v)?.] (4.5) 

The external friction is given by 

fe  - -?€ [(V - nU')j  + (VV + nv)k] 

« -ce{yey + ze:). 

. = '  .    !»■ S   :e''.     '■'    ' 

(4.6) 
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The equations of motion in either frame of reference are now easily written 
from 

Fixed frame 

my + (CJ + ce)y + ay + c,fiz = mSl^a cos Sit, 

mz + (c, + Cc)z + KZ - cfiy = mü2asinW. 

(4.7) 

(4.8) 

Rotating frame 

mv + (c, + ce)v + (K-mß2)v- 2wnw - ceÜw   = niü2a, 

mw + (c, + ce)w + (K -mn2)w + 2müv + cenv = 0. (4.9) 

Most authors find it is convenient to deal with a complex representation of 
the displacements (y, z) and (v, w). Therefore, rather than the Eqs. (4.8) and 
(4.9), one often finds in the literature equations of the following form: 

Stationary frame 

where 

Rotating frame 

mx + (c,- + ce)x + KX - jciüx = mü2ae'Ut, 

x = y + jz. 

(4.10) 

where 

mM + {ci + ce)ii + (K-mß2)u + Imüjü + ce£lju = mü2a,   (4.11) 

u = v + jw. 

It has been mentioned previously that the classical critical speed is excited by 
the unbalanced mass. With this in mind, the critical speed should be apparent 
in the steady solution of the equations of motion corresponding to the unbalanced 
load. 
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Selecting the equations of motion as expressed in the rotating frame of refer- 
ence,it is obvious that a particular solution of Eq. (4.11) is in the form of a com- 
plex constant. Assume, therefore, that 

w = M0 = constant. 

Then, according to Eq. (4.11), 

(4.12) 

"o = 
i7iSl2a 

(K - mSl2 + CgSlj) 

n2ae-'tan_1 {ceül[m/iK/m - fi2)]} 

K 

In ■&\2 + w (4.13) 

If there were no external damping, the expression for M0 would reduce 
to 

«o = 
n2fl 

--122 

m 

(4.14) 

The critical speed is the value of ß such that 

= vi- (4.15 

The presence of external damping limits the amplitude near critical speed. 
Notice that internal damping does not enter the solution at all, since the shaft 
is not undergoing any flexure with this motion. 

An illustration of the shaft motion at a 
speed below critical is shown in Fig. 10. The 
shaft center line is lagging behind the rota- 
tion of the shaft itself by an amount equal 
to 

—y <j) = tan-U 

Fig. 10.   Shaft motion 
at a speed below critical. 

4^r"2) (4.16) 

As the speed approaches the critical, the angle 0 ap- 
proaches 7r/2, so that the configuration is as shown 

in Fig. 11.   Finally, at supercritical speed, the angle 0 approaches TT and the 
magnitude of Uo approaches a. See Fig. 12. 

1 m 
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Fig. 11. Shaft motion 
at a speed approaching 
critical. 

Fig. 12.    Shaft motion at 
supercritical speed. 

To consider the undamped natural frequency, we set Cj = cc = 0 and examine 
the homo^c, . vjs solution of Eqs. (4.10) or (4.11). In Eq. (4.10), for example, 
assume that 

x = xne St 

In order for this to be a solution, the characteristic equation must hold which 
states that 

ms2 + K = 0, 

so that 

y m 

(4.17) 

(4.18) 

and free vibrations are of the form 

x = xxoe-ityJ*i™ + xioe**^*!™. 

In the rotating frame, the free vibrations are of the form 

(4.19) 

(4.20) 

The natural frequency in the fixed frame is yn/m , but there exist two natural 
frequencies in the rotating frame given by 

n ± ■,/- 
m 

,1 

• 
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If the simple shaft system is disturbed from its steady rotation described by 
Eq. (4.13), then oscillatory stresses at frequencies (^ ± s/KJin ) will be recorded 
by a strain gage attached to the shaft. 

In this particular problem, the natural frequencies are a function of operating 
speed in the rotating system but not in the fixed system. This is not always the 
case. When rotary inertia or gyroscopic effects are included, the natural frequen- 
cies are generally dependent on the operating speed in both frames of reference. 

We now consider the question of stability of this simple system and show the 
relationships of natural frequencies and instabilities. Let us focus on the pre- 
vious results for natural frequencies in the rotating frame. The natural frequen- 
cies correspond to the imaginary part of the eigenvalues for the complex variable 
s in the free vibration solution of the form 

u = u0e St 

In the complex s-plane 
operating speed (see Fig. 

i - PLANE 

_L 
•Jmlm 

ifl'O r 
' f a—co 

LOCUS OF ••-i(a + ^«/in 

i J 0'0        .-PLANE 

H'JmTm 

LOCUS OF ••-jtaVlrTm 

Fig. 13. Locus of eigen- 
values in the complex plane 
(neutral stability case). 

we may plot the locus of eigenvalues as functions of 
13). As long as the locus of eigenvalues is on the 

imaginary axis, the implication is that the vi- 
bration mode is neutrally stable. That is, 
it will neither decay nor grow. 

To determine the effect of damping on the 
stability of the system, we again examine 
the characteristic equation for the case of 
finite internal and external damping. 

It should be pointed out that the only 
reason we are able to determine stability from 
the homogeneous solution alone is that the 
system is linear. If there were any nonlinear 
elements in the system, the stability would 
depend on the external forces (in this case, 
the imbalance). 

The characteristic equation, as found from 
Eq. (4.11), is given as follows: 

$2 +   fa f ce) 
m 

s + (4.21) 

+ ISljs + -LSlj = 0. 
m 

The two eigenvalues are given by 

2m VK-^J-fe-^H ^ 
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As an approximation, we may consider the case where both c,- and ce are 
small enough so that, with only first order terms in either c,- or ce, the two 
eigenvalues are 

^-««-^-^(„♦„--B*) (4.23) 

and 

s = -/(n+vVm) -2^ 
+ c( + 

fie,- 
(4.24) 

/ 

• - PLANE 

The vibration mode with the frequency (fl + \/K/WJ is always positively 
damped, whereas the mode with fre- 
quency (fi - \fajm) will be amplified 
exponentially with time, provided that 
12 > yjujin (1 + cjcj). These equations 
make it clear that, for the model ex- 
amined, instability will occur only when 
there is damping in the rotating system; 
i.e., q ¥= 0. 

The locus of roots for each complex 
eigenvalue, i.e., given by Eqs. (4.23) 
and (4.24), is plotted in Fig. 14. When 
the locus of roots crosses over to the 
right half-plane, the mode becomes un- 
stable. The mode which goes unstable 
is the one which corresponds to a 
free vibration in the fixed frame of 
the form 

LOCUS OF i ■ -na*VZrm) - ii[H*c\*J=r] 

PLANE 

x = x20e jtyK/m (4.25) 

LOCUS OF f-j(ß-vWm)-n;[c« + C|-—-^-1 

Fig. 14.  Locus of eigenvalues in the 
complex plane (damped case). 

which is the forward precessing mode. 
Thus, if a system characterized by this 
model were excited by a random disturbance, the oscillatory stress in the shaft 
with frequency (ft - vVw ) could be very large. 

4.1 Basic Causes of Unstable Shaft Motions 

Internal Friction 

Kimball [23] and Newkirk [24] were among the first to recognize that in- 
ternal friction could cause unstable shaft motion when operating above the first 
critical speed.  Newkirk's contributions were made in the 1920's when he was 
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doing research into the cause of shaft whipping, which had been a source of irri- 
tation for high-speed rotor manufacturers. Dr. Newkirk obtained a significant 
amount of information on the phenomenon through an experimental program. 
However, his experimental results were in many cases not correlated with theory 
until much later, and then it was by other workers in the field. 

Some of the important results of Newkirk's investigations are worth discussing. 
The theoretical explanations of many of these efforts are reported by others in 
the results of recent research. Newkirk found that the onset of unstable motion 
was not postponed by improving shaft balance. This was true because the insta- 
bility due to internal friction is a linear phenomenon and thus is independent of 
amplitude; it is, of course, also independent of the magnitude of the external 
exciting forces. So long as the system can be considered linear, then, instability 
will be independent not only of balance but also of orientation with respect to 
gravity. Newkirk's systems never appeared unstable when operated below the 
first critical speed. Their stability has since been confirmed by numerous ex- 
perimental and theoretical researchers. 

At the onset of instability, the rotor center line processed at a speed very close 
to the first critical speed. An increase in operating speed did not change the pic- 
cession rate. The precession results from a negatively damped, free vibration of 
the rotating system at its natural frequency. Only synchronous precession is 
observed because the reverse precession, while a possible mode, is positively 
damped by internal friction. 

The onset of unstable whirl could vary widely between machines of similar 
construction. This would probably not be true if the source of internal friction 
were solely due to, say, hysteresis of the shaft material. The fact of the matter 
is, however, that losses due to fretting or the rubbing of adjacent parts, such as a 
disk shrunk on a shaft, account for the greater part of internal friction. This 
type of action is clearly rather inconsistent because the tightness of a nut or the 
tolerance of a press fit could easily change the amount of internal friction. 
Furthermore, the onset of instability is dependent on the ratio of internal to ex- 
ternal damping rather than the magnitude of each. This means that in a system 
with low internal and external damping a small change in either can have a large 
effect. The fact that most of the internal friction arises from the rubbing of parts 
also accounts for the fact that Newkirk only observed the whirling phenomenon 
in built-up rotors. 

One result which was especially perplexing to Newkirk was that an increase 
in system flexibility would delay the onset of instability. He naturally expected 
that an increase in bearing support flexibility would reduce the critical speed and 
hence bring about unstable motion earlier. The answer to the apparent paradox 
was that the support stiffnesses were not equal in two directions perpendicular 
to the rotor. Kellenberger [25] and, more recently, Gunter [2] present numer- 
ous maps and graphs showing the effect of bearing/support asymmetry in narrow- 
ing the range of operating speeds for which instabilities arise in the presence of 
internal and external friction. 

■mmtm'' 
■■'-■■'P 
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Kellenberger reconsidered the stability problem of a disk attached at the 
center of a rotating, massless, elastically Isotropie shaft in the presence of internal 
and external damping. He introduced the additional influence of anisotropic 
bearing supports and found thp.c an increasing degree of anisotropy delays the 
onset of the unstable region to higher operating speeds. 

The nature of a realistic law of friction in solids, for the most part, 
remains a matter of conjecture. With regard to internal friction in rotat- 
ing shafts, most authors make the assumption that the force of internal 
friction is proportional to the linear or angular velocity of the shaft center 
line, measured with respect to a coordinate system which is rotating with 
the shaft. 

It can generally be stated that this simple assumption gives results which are 
qualitatively correct in many cases, but certainly not in every case. The fact that 
the instability threshold associated with internal shaft friction is in the vicinity of 
the first critical speed for low external damping is accurately predicted by linear 
theory. On the other hand, linear theory does not account for the fact that it is 
sometimes necessary to strike the shaft of a well-balanced rotor with varying 
degrees of intensity in order to induce the nonsynchronous whirl which is asso- 
ciated with rotating shaft instability. Nor does the assumption of simple linear 
friction provide a true picture of either the range of instability or the final ampli- 
tude involved. 

It is not difficult to see how the nature of the internal friction could be re- 
sponsible for the dependence of the threshold speed on the degree of shaft im- 
balance. Consider, for example, the following. First, it is well known that the 
most important component of internal damping in rotating shafts is that caused 
by dry friction between contact surfaces of rotor parts during deformations of 
the rotor. Suppose that the dry friction characteristic is such that there will be 
no relative motion until the shear force at the interface exceeds some given value. 
At that point the two contacting surfaces will have a relative velocity propor- 
tional to the shear force (as in the usual simplified approach). With such a fric- 
tion law there will be effectively no internal damping until the shear force 
(which depends on the degree of imbalance) reaches some threshold value. 
Furthermore, for a given shaft system, there will generally be more than one 
source of internal damping, e.g., between the shaft and impeller hub, rotor key- 
ways, and so forth. For a given imbalance, slippage between one set of contact 
surfaces may not begin at the same operating speed as between another set. On 
the other hand, an increasing imbalance may initiate more sources of internal 
friction for a given operating speed. The new result of this kind of friction law is 
that the onset of unstable motion would depend on the imbalance or the 
strength of a lateral disturbance applied to the supercritically operating 
shaft. 

Tondl made attempts to account realistically for the effects of internal friction 
in rotating shafts by investigating both the effect of hysteretic damping in shafts 
of uniform mass and dry friction between press-fitted parts [9].  He examined 

'■.■'   .1.. ?',■*,,. v      '    '■ 
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the problem of a single disk at the center of a massless shaft subject to internal 
friction in the form 

I 
Ci(wflx|£|)-jr- , 

rather than the more elementary viscous friction form c,f. This assumes that the 
hysteretic damping force is such that it acts in the same direction as the relative 
velocity f but that the magnitude is constant and dependent only on maximum 
displacement. 

Tondl shows that, with a more realistic form of internal damping, the amount 
of instability due to internal friction is not generally independent of the imbal- 
ance or of the orientation of the shaft. For example, a shaft which is stable for 
supercritical operation while operating in a vertical position will also be stable 
in a horizontal position, but the converse is not necessarily true. Further, his 
treatment of internal friction reveals that enough external damping can eliminate 
the unstable range altogether if the friction is due to hysteresis, whereas there will 
always be a threshold value of operating speed above which the shaft will be un- 
stable if the source of internal damping is dry friction. 

It is noteworthy that in performing experiments dealing with the effects of 
internal damping, the usual procedure is to use a shaft running in ball bearings in 
order to reduce the possibility of having unstable motion arising from fluid film 
bearings. The latter subject is treated in the section on bearing lubricants, 
p. 37. 

Asymmetry of Rotating Parts 

Smith [26] was among the earliest investigators of instabilities arising from 
asymmetry in a rotating shaft system. His observations in this area were re- 
markably accurate. In fact, some of his observations, such as those dealing with 
the effect of bearing support asymmetry on the instability due to internal fric- 
tion, seem to have been rediscovered by at least two different authors two decades 
or more later. 

Other important contributors to this subject include Brosens [12], who con- 
sidered rotors with unequal principal moments of inertia (he also considered the 
problem ofanunsymmetrical shaft operating in anisotropically flexible supports); 
and Ariaratnam [27] who concerned himself with the presence of internal and 
external friction in a horizontal shaft with unequal stiffness about its two trans- 
verse axes. The shaft system Ariaratnam treated was assumed to have a constant 
mass per unit length. In addition, however, it was allowed to have a small initial 
bend of arbitrary shape and also a continuously varying mass imbalance. 

Ariaratnam's approach expands all spatial functions as an infinite series in 
the normal modes of the nonrotating shaft. His results confirm that instabilities 

ri      'x j.' i» v" '. 
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in the absence of damping occur in operating speed ranges which lie between the 
two natural frequencies associated with each nonrotating mode. External damp- 
ing narrows the widths of the unstable regions associated with shaft anisotropy 
to the point where some particular value will eliminate one or more of the un- 
stable zones altogether. If only internal damping is present in the anisotropic 
shaft, the whole operating range above the first critical speed becomes unstable. 
If external damping is much greater than internal damping, however, the onset of 
instability due to internal damping is delayed to a much higher operating speed. 
The consistency of these results with those of Tondl for shafts with internal 
hysteresis damping, discussed earlier, is, of course, reassuring. 

Ariaratnam also treated the forced response of an anisotropic shaft due to 
initial bends, mass eccentricity, and gravity. The results show that shaft imbal- 
ance and lack of straightness can cause system resonance at a doubly infinite set 
of critical speeds which bound the unstable regions of free vibration. Resonance 
due to gravity is shown to occur only when there is asymmetry of the rotor. 
Furthermore, the amplitude buildup at secondary critical speeds is generally 
small, unless the stiffnesses of the shaft in the two principal directions are radi- 
cally different. 

Yamamoto et al. [28] l.avc published a series of papers in the area of vibra- 
tions of unsymmetrical rotating shafts. The only asymmetries they treat are of 
the type due to a rotor vhlch has unequal principal moments of inertia. The 
model consists of a massless shaft with an attached disk (not generally located at 
the center of the shaft). They discuss zones of instability in which the free vibra- 
tions grow exponentially with time. 

The instability arising from asymmetry in the flexibility of a rotating shaft is 
most simply illustrated for the case of a disk at the center of a massless elastic 
shaft. We can write the equations of motion for such a system by modifying the 
equations developed at the beginning of this chapter to account for the asym- 
metry in shaft flexibility. 

The changes appear in the elastic restoring force. Rather than Eq. (4.4) we 
have instead 

) 

= - K(ji't'y + ze,) - K'(V COS 2Slt + z sin 2üt)ey 

- K'(V sin ISlt - z cos 2^0^,. 

where 

_ /K^j 

■■>>-:„■>'> ..'«WS,    ■ 

(4.26) 

(4.27) 
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The equation, of motion are then given by: 

Stationär}' frame 

my + (Cj + ce)y + yQi + K' cos 2fiA) 
+ n'zsmlüt + Cj-fiz = mn2acosQ,t 

mz + (Q + ce)z + Z(K-K'COS 2^2/) 
+ a'y sin 2Slt - CjV.y  - mSl2a sin üt 

Rotating frame 

mv + {ce + Ci)v + («,,- mn2)v - 2/77nvv - ceSlw    = m&a 

mw + {ce + c,)w + {KW -mSl2)w + 2mfii' + ceSlv = 0 

(4.28) 

(4.29) 

The equations of motion in the stationary frame are linear, but they have 
periodic coefficients. In the rotating frame, the equations take the form of linear 
differential equations with constant coefficients. Since solutions to equations 
with periodic coefficients are less commonplace, the rotating frame is normally 
used when there is asymmetry only in the rotating parts of the system. The fol- 
lowing derivation also proceeds along those lines; it should be noted, however, 
that much can be learned about systems described by equations with periodic 
coefficients by studying systems such as this in which a transformation of coor- 
dinates eliminates the periodicity in the coefficients. 

Employing the complex notation again for (v, w), Eq. (4.29) may be replaced 

by 

mu + (cc+<;,)" + (K-mSl2)u 

+ K'M + ImSlji + ceÜju = mSl2a. (4.30) 

In stability investigations one looks for solutions for v and w such that 

v = v0e*' 

and 

w ~ Woe1', 

so that 

M = M0e^,     « = M0e", (4.31) 
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1 

and 

I ms1 + [(Cg + c,) + 2mn/]s + [K - mfi2 + cen/] ■u0 + K'U0 = 0. 

The conjugate of this equation also holds. That is, we can replace / by -/, u0 by 
«o, "o by M0; thus, 

s2   + 

m 

ce + c, 
m ~2Üi\s 

K ,,   ., CeJl/ + --n2 - w 

/•   >, 

-< 

r ^ 

> = < 

\.   s 

>. 

v. J 
(4.32) 

The characteristic equation is then given by 

s2+ ce Ll£ls+(l-a2? + {m*^J& -[^\   - 0.       (4.33) 

It can be shown by means of the Routh criterion that., in addition to an un- 
stable region due to internal damping, there may be an instability in the range of 
operating speeds between y/ic^Jm and \/Kv/in , i.e., between the two critical 
speeds of the undamped shaft. 

The effect of external damping on this latter instability range is to shift its 
center to slightly lower speeds and to narrow it down; as noted earlier in this 
section, sufficient external damping may eliminate the instability altogether. 

Bearing Lubricants 

Probably the most frequent source of unstable shaft motion is the action of 
an oil-lubricated journal in its bearings. It is also probably one of the most dan- 
gerous in that it can easily lead to bearing seizure. 

It was Newkirk who first recognized this type of instability. He had been 
involved in the study of shaft whipping (i.e., synchronous precession due to in- 
ternal damping), when he observed a violent whipping motion which obviously 
did not arise from either hysteresis or dry friction. Newkirk referred to this new 
phenomenon as oil whip, and many subsequent researchers adopted this termi- 
nology.   Newkirk and Taylor [29] published the first paper that offered an 
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explanation of the cause of this instability. From a simple consideration of the 
continuity of oil flow about the journal, the journal center was shown to precess 
at an angular rate equal to one-half the operating speed. 

Some of the principal investigators whose analytical work followed the ex- 
perimental findings of Newkirk are Robertson [30], Hagg [31], Hori [32], 
Poritsky [33], Pinkus [34], Tondl [9], and many more. 

The instability due to the oil film in journal bearings, of course, involves fluid 
mechanics, and early advances in the theory were mainly due to improvements in 
the approximate equations governing fluid films. Robertson developed expres- 
sions for the forces acting on a journal due to the action of a load-carrying oil 
film at a very early date (1933). His results are valid for a viscous, incompressible 
lubricam where there is no side leakage. 

The results of many investigations, both theoretical and experimental, were 
often in disagreement in many respects. In particular, there was no universal 
agreement on the angular velocity of the se!f-excited vibrations. Most authors, 
however, felt that it was at the natural frequency of the rotor. 

Stability analyses of journal bearings usually represent the nonlinear bearing 
forces as perturbations about some equilibrium position. It is then possible to 
use the Routh-Hurwitz criterion to determine stability boundaries. The resulting 
linearized bearing forces affect rotor stability in a manner which is not very dif- 
ferent from that of the linearized internal friction force. 

Effect of Nonlinearities 

While Tondl's investigations into the effects of nonlinear friction forces pro- 
vide one mechanism for harmonic whirling at a finite amplitude (i.e., in a limit 
cycle), there are other possible sources of nonlinearity which could have similar 
results. Billett [35], for example, treated the case of a shaft in bearings with 
symmetrical nonlinear flexibility and internal friction. This type of nonlinearity 
is cited as perhaps characteristic of ball bearings. 

The specific mathematical model used by Billett is, again, the disk mounted at 
the center of a massless, elastic shaft. Both internal and external frictions are 
assumed to be of the simple viscous type. The equations of motion of this sys- 
tem are given by 

mx + m(ß + v)x + F(r)(x2 + y2)~l/lx + mvüy = mr2acosSlt       (4.34) 

and 

my + miiji + v)y + F(r){x2 +y2)-Vly - mvtix = m&asinSlt,     (4.35) 

where r - sjx2 + y2  and F(r) is the radial restoring force in the plane of the 
rotor. 
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The stiffness of the support is assumed to increase with deflection so that 

F(r)>0, 

F (n > —1- . 
r 

(4.36) 

It can be seen that Eqs. (4.34) and (4.35) reduce to the linear equations as pre- 
sented early in this chapter for the case where 

F'{r) = k     or     F = kr. 

Making use of a complex representation of the deflection in the stationary 
frame, i.e., z =x + iy, the following equation of motion may be written: 

z + OU + J^Z + ^z(zr)-'/3 - lUvz = n2ae''nt. (4.37) 

Billett considers first the case of synchronous whirling in which z -Re1* t'^\ 
It is shown that there will be discrete values for R and 0, given a speed Ü. These 
values, in this case, will depend on the imbalance, since F(r) is constant but de- 
pendent on the imbalance. Billett's stability analysis is linearized, in the usual 
manner, by considering a small perturbation about a mean whirl amplitude; those 
solutions lead in turn to the existence of nonsynchronous whirl of finite 
amplitude. 

; 

4.2 Methods for Predicting Instabilities 

Stability Criteria vs Eigenvalue Locations 

Many papers in the literature which treat the instabilities of rotating shafts due 
to friction, asymmetry, journal bearings, and so forth, use the Routh-Hurwitz 
criterion to test the stability of the characteristic polynomials. 

For «th-order linear differential equations with constant coefficients, an in- 
vestigation into die free vibrations of the form eikt always leads to an «th- 
order characteristic equation of the form 

(flo + iboW + («! + /MX"-' + ... + (a,, + ibn) = 0.        (4.38) 

The roots of this equation may be complex whether the coefficients are real or 
complex. 

IM 
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The stability criterion for such polynomials consists of a requirement that n 
particular determinants each be of a certain sign. The necessary and sufficient 
condition for all modes to be stable is that 

00      ai 
> 0     and 

bo 

0 

0 

a, 02 

bx b2 

a0 a, 

b0 hi 

0 

0 

a2 

b2 

> 0,     (4.39) 

and that in general 

flo 01 . . . an 0 0 

h by b„ 0 0 

0 ao ön-l a,, 0 

0 bo ''n-l bn 0 

(-iy 0 0 

0 

ao 

bo 

... >0. 

If any of the eigenvalues of A have negative imaginary parts, the solutions are of 
the form ei"'*1'*, which grow exponentially with time and indicate an 
instability. For example, consider the simple model considered in the first 
section of this chapter. The characteristic equation was given by Eq. (4.21). 
Since s is equivalent to i\, we see that, for that example. 

(ao + ibo) - -1. 

(ai+,-M = 'fe^)- 2n, (4.40) 

and 

(fl2 + /ft2) = fin/ + fl -nA 
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Therefore, in order that all tiie modes be stable the necessary and sufficient 
condition is that 

and 

-1 

0 

-1 

-20. 

ft + Ce 
m 

-2Ü 

m 

> 0 

U-n:) 
ceÜ 
m 

-20 

m 

(^" -) 

ceO 
m 

> 0.      (4.41) 

The first condition is always true so long as the constants and ce and c,- are 
positive. 

The second condition requires that 

m\  m   j        \m I ' 
(4.42) 

Equivalently, all modes are stable as long as 

O < t^ (4.43) 

This is the identical result obtained at the beginning of this chapter by taking a 
first approximation for the complex roots. 

The advantage of using the Routh-Hurwitz criterion in this particular example 
is that no approximations need be made in calculating stability boundaries. On 
the other hand, if only this stability criterion is used, no insight as to the behavior 
of the motion in the unstable regime is gained. The unstable mode is not identi- 
fied, and the growth rates will be undetermined. To predict these characteristics, 
one can solve for the roots of the characteristic equation. In practice, instabili- 
ties can probably be investigated best by a combination of techniques. 

The foregoing example is really a very special case. For this simple, second- 
order system, the process of finding the roots exactly is not difficult; the Routh- 
Hurwitz criterion, therefore, while straightforward, adds no information. 
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Inpracticalcasesmany degrees of freedom are involved. Generally, then, there 
will be many complex roots of the characteristic equation, and the procedure for 
their solution will require either approximations or iterative techniques. 
In either case it will probably be worthwhile to apply the Routh-Hurwitz 
criterion. 

Consider a ten-degree-of-freedom system, for which the stability of the sys- 
tem within a certain operating range is of interest. Determining all ten roots will 
require a trial and error or iterative process for each root at each of the many dif- 
ferent values of operating speed in the range of interest. Applying the Routh- 
Hurwitz criterion, however, will involve evaluating ten different determinants 
(of order 2,4, 6,..., 20) for the same number of speeds in the range of interest, 
but no iterations. 

An efficient approach would be to first scan the regime of interest with the 
Routh-Hurwitz criterion. If no instabilities are indicated, there may be no need 
to know the roots. If an instability is indicated in a certain range, the roots 
could then be evaluated for those limited operating speeds, to determine the 
unstable mode or modes and their frequency and growth rate. Such information 
is likely to suggest design changes to suppress the instability. For example, a 
knowledge of the growth rate indicates the characteristics of the external damping 
device needed to stabilize the system. 

The analytical techniques used to arrive at the characteristic equation govern- 
ing the stability of the shaft system are, of course, identical to those which are 
used to compute the natural frequencies as a function of operating speed. Sta- 
bility analysis requires only that the frequencies be allowed to be complex. It 
should be emphasized that all these procedures apply only when the governing 
equations of motion are ,: 'ear differential equations with constant coeffi- 
cients. 

When there are asymmetries in the elastic or inertial or damping properties of 
both the rotating and nonrotating parts ofa shaft system, the governing equations 
will have periodic coefficients, no matter what frame of reference is used. For 
example, if a slotted shaft, carrying a disk at its center, is operating on supports 
which have unequal flexibilities in two directions, the governing equations are 
given by the following expressions: 

Stationary frame 

my + (Cj + ce)y + (K + ky + n' cos 2W)y 

+ (c/12+ K'sin 2n/)z      = /«f22acos J2r. 

mz + (cj + ce)z + (K+ kz-K' cos 2J2r)z 

-   (c/H - K' sin 2nt)y      = m&a sin Q.t,      (4.44) 

4!P^'V 
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Rotating frame 

mv + (c/ + ce)v + {Kv + k + k' cos 2Slt - mJ22)v 

- 2mSlw - (cef2 + k' sin 2^0^ = wfi2«, 

and 

mvv + (c,-+ ce)w + (Kvv + Ar - A;'cos 2J2f-mfi2)w 

+ 2mnv + (cen - ^ sin 2n0v = 0.        (4.45) 

These equations assume that the imbalance Iks along the principal axis of 
shaft bending. However, this does not enter into stability considerations, since 
only the left-hand sides of the equations are considered in a linear analysis. The 
important point here is that the presence of periodic coefficients apparently 
can not be avoided. There are no known closed-form solutions to coupled equa- 
tions of this type. Accordingly, most theoretical investigators have avoided 
problems in which they arise. In practical situations, however, there will always 
be asymmetries in both rotating and nonrotating parts to some degree. Assuming 
otherwise involves an approximation. 

Direct Numerical Time Integration 

The direct numerical time integration approach can be made to work very well 
for particular design problems but gives little insight into the physics of the pre- 
dicted behavior. Any number of nurperical schemes such as Runge-Kutta can be 
applied to the time integration. 

Generalized Hill's Method 

An extension of Hill's pr „edure to the coupled, linear differential equations 
with periodic coefficients encountered with an unsymmetrical shaft operating in 
unsymmetrically flexible supports was first published by Foote era/. [11] in 
1943. Similar work was published by Brosens and Crandall [36] in 1961 and by 
Colemanand Feingold [37] in 1958. The Coleman work addressed the mechani- 
cal instability of helicopter rotors with hinged blades, but the equations of mo- 
tion are similar to those of concern here, and their methods of analysis there- 
fore apply. The most recent work known at this writing along the lines of 
generalizing Hill's technique is due to Crimi [38]. 

Asymptotic Methods 

If the source of asymmetry in rotating shaft systems is relatively small, each 
periodic coefficient in the governing equation of motion is usually multiplied 

, 
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by some small parameter. For example, in Eq. (4.45) the quantity K' may be 
considered very small compared to /T, as may be seen on examination of Eq. 
(4.27). 

Tondl [9] uses a method wherein the solution is assumed in the form of a 
power series in the small parameter. His approach predicts the instability in- 
tervals by a method of successive approximations. Tondl's method seems easy to 
use and, also, is useful in determining the approximate solution of the stability 
of linear systems with constant coefficients when there is a large number of de- 
grees of freedom. 

Unfortunately, the method is not always applicable. For example, a shaft 
with a very unsymmetrical cross section, operating on a stand which is flexible 
in one direction but extremely stiff in the other, allows the relative differences 
in flexibilities of neither shaft nor supports to be assumed small. However, for 
many practical systems the asymmetry of at least the rotating parts is small. 
This technique, therefore, is useful for a broad class of practical problems. 



CHAPTER 5 
FORCED BENDING RESPONSE AND TRANSITION 

THROUGH CRITICAL:  LATERAL SHAFT PROBLEMS 

Analysis of forced response—as, for example, results from mass imbalance- 
shows that large amplitudes may be encountered in the vicinity of critical speeds. 
This requires, of course, that the operator not allow the speed to linger in the 
region of a critical speed. In practice, then, the magnitudes of shaft deflection 
are strongly dependent on the rate at which the shaft is accelerated or decelerated 
near or through critical speeds. Nevertheless, much information can be inferred 
from forced response analyses and stability studies wherein the operating speed 
is assumed constant. 

5.1  Forced Steady State Response 

It is usual, in determining the forced steady state response of a linear elastic 
system in the presence of a periodic external force, to seek a periodic solution 
having the same period as the forcing function. For the rotating shaft carrying 
an unsymmetrical rotor, however, this is not the only solution. Yamamoto [39] 
showed, for example, that a massless shaft carrying i disk with two different 
principal lateral moments of inertia and rotating with angular velocity J2, 
would, when excited by a (fixed system) periodic external force with frequency 
co0, undergo forced vibrations consisting of the sum of two periodic functions. 
These motions would have frequencies co0 and (2$l - CJQ), as detected by a 
vibration-measuring device on the bearing pedestal. It is emphasized that the 
amplitude of the response at the latter frequency might be significantly larger 
than the amplitude at the forcing frequency. 

It is important to note that these rather peculiar results manifest themselves 
because this behavior has been described as it is observed in the stationary coor- 
dinate system. If the motion is described as it is observed in the rotating coor- 
dinate system, the results seem more conventional. As mentioned above, the 
response as measured in the stationary frame has frequencies Ü ± (COQ - Q,). 
Any oscillation or forcing function which in the stationary frame has the form 
of a constant xe/wo' would be measured as having the frequency (co0 - Ü.) 
in a reference frame fixed in a shaft rotating at an angular velocity equal to fl. 
Thus, the forcing function has a frequency (c«;0 - Ü) when measured in the 
rotating frame, and the two components of the response in the rotating frame 
have frequencies n ± ((jj0 - Ü) - SI = ± (u>0 - n). Therefore, the frequency 
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magnitudes of the two response components are the same when measured in the 
rotating system. The difference in sign is associated with the direction of rotation 
(as measured in the rotating frame). 

The exciting frequency CL)0 is general, so that the force of gravity is a possible 
special case in which the force is constant both in magnitude and direction so 
that the forcing frequency is zero (OJQ 

= 0). Consequently, in the stationary 
frame, vibrationsat zero frequency (i.e., static deflection) and at 2f2 are detected. 
In the rotating reference frame, one would measure vibrational frequencies -£l 
and +12, which are, of course, vibrations at frequencies equal to the angular veloc- 
ity of the shaft. Since it has been noted that the portion of the response with 
frequency equal to that of the forcing function may be the smaller of the two, 
gravity excitation could result in twice-per-revolution response greater than the 
static deflection. Here both deflections are considered in the nonrotating 
stationary frame. 

) 

5.2 Response During Transition 

When the forcing function is due to imbalance, the frequency a)0 is obviously 
equal to the operational speed J2. Then, only a vibrational frequency of value n 
is detected in the stationary system. In the rotating system, the frequency is 
zero. All this is true, however, only if the rotational speed Ü, is constant. In 
considering the problem of transition through the critical speed, it is necessary 
to account for the variable speed in order to determine the maximum deflection 
o< stress involved, since response magnitudes are dependent on acceleration or 
deceleration rates. 

A complete and accurate picture of the transition situation can be obtained 
only by considering the torque and angular velocity relationships of the driving 
motor. Goloskokov [40, 41] treated the transition problem by assuming that 
the moment output characteristics of the driving motor are independent of ac- 
celeration; this is, of course, only an approximation. Another approach [42], 
which allows for the time-varying nature of the coefficients, to be seen in the 
following pages, is to simulate the shaft motion during transition by an analog 
computer. 

There have been, in fact, very few theoretical studies of the trans'^ion prob- 
lem. They have all been restricted to the simplest configurations, and they 
usually disregard the interaction of torque and angular velocity. This is done by 
assuming a definite form for the acceleration, e.g., constant. Of course, in order 
for the angular velocity to increase linearly with time, the applied torque may be 
required to vary in an unrealistic way. But by specifying the angular-velocity 
time history, as has been done, the torque itself often remains implicit. The as- 
sumption of constant acceleration, of course, has the advantage that it allows a 
fairly straightforward analysis. The results are likely to be valid as long as the 
shaft speed range investigated is small enough. 

v A4 V    ■ 
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The brief analysis of transition through critical speed which follows is based 
on Dimentberg's solution [5] for a disk at the center of a massiess elastic shaft. 

Let the position vector from the line 
of centers of the supports to the center 
of mass of the unbalanced disk (Fig. 15) 
be given by 

r = vj + wk + aj     (rotating frame),     (5.1) 

and 

T = yej + zek       (fixed frame). 
Fig. 15.   Fixed and rotating 
coordinate systems. 

The angular velocity of the i, j, k triad is given by f2i, where 

(5.2) 

The velocity of the center ot mass is equal to the first time derivation of the 
position vector; 

7 = i'j + u'k + rZi'k - Slw] + fiak 

=  'ycj + zck, (5.3) 

Differentiating once more, we have the acceleration of the center of mass: 

r - -j{v-Q.w) - nOv + ßp + fia) 

j (vv + riv + fifl) + i"2(r - nu*) 

ycj + zek. (5.4) 

The elastic restoring force on the shaft is provided by the shaft stiffness: 

fe = _ K(vj + wk), 

= - K[(}' -a cos (t>)ej + (z - a sin 0)^ ]. (5.5) 

Newton's second law provides the equation of motion of the system. Having 
developed the expressions for force and acceleration in both the stationary and 

 r-T-'i'V :   ."■■' 
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moving frames of reference, we are able to write the equations of motion in both 
frames: 

Stationary frame 

where 

Rotating frame 

ny + KV = na cos 0, 

mz + KZ = Ka sin 0, 

0 = n0r + at2\ 

—-n2V - lilw - hw = Ma, m        j 

(5.6) 

(5.7) 

where 

ü = 2a, Ü2 = (n0 + 2at)2 

It is clear that Eqs. (5.5) to (5.7) may be solved without a knowledge ol the 
torque if the acceleration a is specified. However, for completeness, we proceed 
now to develop an expression for the torque. 

The angular momentum of the disk about its center of mass is equal to its 
polar moment of inertia times the angular velocity of the disk itself.  That is. 
Lc.w.+/pni. 

The total moment of force acting about .he center of mass is 

Ti- aixfe = iT + aKw)i. (5.8) 

Equating the total moment and the rate of change of angular momentum, we 
have 

or 

T - - naw + 2aln 

T = Ka(y sin 0-z cos 0) + laL. 

(5.9) 

(5.10) 

■■'-■   -y. ■••;■' 
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"       m 

Or, in terms of the stationary coordinates, 
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Equations (4.9) and (4.10) will provide the torque time history required to ac- 
celerate the shaft as assumed. 

The governing equations, (5.6) or (5.7), are to be solved subject to the initial 
conditions the shaft had at the instant the acceleration was begun. Those condi- 
tions are found from the particular solution with $ = ü0t and f2 = ft0. Thus, 

aSlo 
v  = 

(co^-no2)' 

w = 0, 

v = 0; 

w = 0; (5.11) 

flcoj J20r 
y =  ^T' 

1- £2o_ 
nn

2 

-n0fl sin £l0t 

i nn
2 

z  = 
a sin J20 

1 
U 2 ' Z  = 

12oaoos SIQI 

CO 

Starting aW = 0, we have 

or 

^o   = 
co„2 

1- 
n, 2 ' 

U}n 

w0 = 0, 

^o s 

2o   =0, 

n0 
co„ 

2 ' 

1 " 
üc 

03. 

vo  = 0; 

w0 = 0; 

^o = 0; 

O0a 
2o  = " 

fir 

COK 

-^^F 

(5.12) 

(5.13) 

(5.14) 
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Dimentberg approached this problem by working with the fixed coordinate 
system to the point where a general solution to the differential equations was 
obtained. Then expressions for the displacements in a rotating coordinate 
system were found using a coordinate transformation. Inspection of Eq. 
(5.6) vs Eq. (5.7) reveals the rationale for this approach; it is simpler to 
solve the equations of motion, in this case, in the fixed system, even though 
the primary interest is in the displacements and stresses in the rotating 
system. While both sets are linear differential equations, they have constant 
coefficients in the fixed frame, as opposed to nonconstant coefficients in the 
rotating frame. 

The formal solution of Eq. (5.6), subject to the initial conditions of Eq. (5.14) 
is given by: 

y = ow„   I sin a)„(r-T)cos(S20T-aT2)dT, 

z = aw „ I sinco„(/-T)sin(n0T-aT2)dT 
Jrt 

(fln0\ sinco„r 

CJ„ 

(5.15) 

Through use of a coordinate transformation, and after considerable algebra, 
the expressions for the deflections in a system rotating with the shaft are ob- 
tained from Eqs. (5.15); 

v = aw 
" V8a -sini^cOO-cO'ö)] +cosv[s(i')- {v^)] 

+ sini''[c(i'')-c(i'ö)] - cosi''[s(i/)-s'V)] 

cos w„r cos (ft0f + at1) 
1- 

fio2 

wM 

+ £o 
u)n sintij„?sin(n0r + ar2) (5.16) 
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and 

w  =  flCO "V 8a 
-co%v[civ)-c{u0)] - sinv[s(y)-s(y0)] 

+ cosv[c(y')-(iv0)] + sinv'K^-sCo)! 

a 

1 2 

ftr 

- cos o}nt sin (nor + a/2) 

+   ^o sin aV cos {Sl0t + a/2) (5.17) 

where 

and 

c( 
COS 0 

.. x/27rc 
do 

\  sin a 
|—rrrcfo 

are tabulated functions known as Fresnel integrals, and 

n0 - o;,, 

"»     ^    2^ 

and 

The expressions given by Eqs. (5.16) and (5.17) are exact for the model being 
discussed. They may be plotted against time as the system passes through critical 
in order to assess the actual deflections encountered in the transition. 

Dimentberg presented a plot of (v. v/) as the shaft passes through critical for 
a system having a;n = 105 rad/sec, n0 = 94.5 rad/sec, a = rad/sec2. His plot was 
redrawn and is displayed in Fig. 16. Notice that the amplitudes reach maxima 
somewhat beyond the point where the instantaneous operating speed is equal 
to the critical speed wn. The maximum amplitude is about seven times greater 
than the initial amplitude at 0.94 of critical, for this case with zero damping. 

rr?;—■ ■-' rastwCT' *     ' 
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INSTANTANEOUS ANGULAR VELOCITY COiNCiDES 
WITH CRITICAL SPEED- 

—UNDAMPED 
--DAMPED 

t, MC 

6       .8       1.0 

Fig. 16.    Deflections as the shaft passes 
through critical. 

» 

A close look at the form of Eqs. (5.16) and (5.17) shows that the transition 
through critical induces vibrations at frequencies equal to the sum and difference 
of the instantaneous operating speed and the critical speed. Based on the discus- 
sion of Section 5.1, this means that, in the stationary frame, there will be response 
with a frequency equal to the critical speed. 

5.3 Effect of Damping on Transition 

If external damping is present in the system, transition deflections will be 
reduced. Dimentberg also considered an unbalanced disk at the center of a mass- 
less shaft subject to external friction. The equations of motion given by Eq. (5.6) 
are then modified by the addition of viscous damping terms on the left-hand 
side, i.e., cy and cz, respectively. Dimentberg's analysis showed that the same 
case cited above with friction added in an amount such that c/m = 1 would ex- 
perience a maximum amplitude only about three times the value at 0.94 of 
critical. This is less than 50 percent of the maximum amplitude for the un- 
damped case, as shown in Fig. 16 with dotted lines. 

Dimentberg also treats the problem of an undamped shaft accelerated through 
critical when the supports are both flexible and anisotropic. The equations of 
motion in the final system are no more difficult to solve than before, since 
equations are uncoupled and the unequal supports merely change the effective 
value of K in each equation. 

5.4 Transition Through Secondary Critical Speed 

Dimentberg also considered a shaft of unequal stiffness operating horizontally 
and accelerating through its secondary critical speed. The asymmetry of the 
rotating part introduces nonconstant coefficients into the equations of motion 
expressed in the fixed system. Dimentberg therefore worked directly in the 
rotating system, but still found it necessary to ignore certain terms to reach a 
solution. Essentially, he dropped the second derivatives and solved the resulting 
system of first order equations by methods of integral calculus. 

liiiiP 
w* 



CHAPTER 6 
COUPLED BENDING AND TORSIONAL MOTION 

The principal concern in this chapter is with phenomena in which lateral and 
torsional motion interact. 

The rationale commonly used in ignoring the coupling is that the coupling is 
usually determined by mass imbalance, which is a small quantity. Further, 
natural frequencies of lateral and torsional motion have, in the past, been so far 
removed from one another that they made dynamic interaction unlikely. 
However, with the advent of supercritical-speed shafts, which often have rela- 
tively small diameters, the uncoupled torsional frequencies can fall into the same 
range as the bending frequencies which are above the fundamental but below 
operating speed. Neglecting bending and torsion coupling in such cases may 
give inaccurate predictions of the critical speeds. More importantly, fundamental 
phenomena such as additional instabilities-where they exist-would be missed 
altogether. The coupling of bending and torsional motion also becomes im- 
portant when investigating the influence of unsteady torque loading. 

Just as pure lateral shaft motion has been the subject of the monograph to 
this point, it is well to begin the discussion of coupled bending and torsion with 
an initial review of pure torsional motion. 

6.1 Pure Torsional Motion 

Pure torsional vibrations can reasonably be considered whenever lateral motion 
is substantially absent, as for example because the shaft is extremely stiff laterally 
or because there are sufficiently frequent bearing locations constraining the 
system—or if coupling effects are negligible. For example, torsional vibrations of 
engines and geared systems have usually been considered solely torsional problems 
because of the lateral constraints used. 

Pure torsional free vibrations of a rotating shaft do not differ in their dynamics 
from those of a shaft which is not rotating. This is in contrast to lateral free 
vibration characteristics, which are generally a function of the shaft operating 
speed. The reason for this behavior is, of course, that, by assuming a purely tor- 
sional motion, one eliminates the possibility of centripetal or Coriolis forces 
doing work on the motions of interest. 

In the pure torsional vibrations of a crankshaft, for example, the rotational 
speed affects the vibrations only through its influence on the frequency of the 
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periodic torques felt by the shaft. The preponderance of the literature concern- 
ing torsional vibrations of shafts is, therefore, devoted to computation of tor- 
sional natural frequencies and mode shapes. 

The theory of torsional vibrations of rotating shafts with attached disks is 
generally much simpler than that for lateral vibration. On the other hand, some 
complications often arise in the torsional case which need seldom be considered 
for lateral vibrations. For example, it is fairly common to speak of torsional 
vibrations of branched systems, such as encountered in gear trains, whereas the 
lateral vibrations of such configurations rarely receive attention. (An exception 
is the lateral bending of launch rockets for space vehicles in which the former 
have "clustered" tanks [43,44]. 

If a torsional system is composed of n disks on a rotating shaft, then the 
equation of motion of an Individual disk is given by (see Fig. 17) 

/,*. + *,(*.-*,>.) + ^-i(*/-*,-i) = T,, (6.1) 

where 

is the torque applied to the /th disk, 
is the instantaneous angle of rotation of the /th disk, 
is the polar moment of inertia about the fixed point at the center 
of the shaft. 

If, instead, we deal in a rotating coordinate system we have 

*,• = CJ/ + 0,-, (6.2) 

i+i 

n 
-■i »— 
-4   I— 

I   I 
-I u—1 

and the form of the equation of motion is invariant. 
The solution of the equations of motion for the case of free vibration (i.e., 

with the applied torques set equal to zero) 
yields the uncoupled torsional natural fre- 
quencies of the system. 

Resonance, of course, results when a 
periodic applied torque, which has a fre- 
quency equal to one of the natural fre- 
quencies, either arises within the system or 
is applied. 

In practice, the frequencies of the ex- 
ternal torques are usually related to the 

operating speed of the shaft by some integral multiple. For example, gravity 
institutes a once-per-revolution pulsating torque on a horizontal shaft if any 
attached disk has imbalance; i.e., if the center of mass of the disk does not coin- 
cide with the center of the shaft. In that case, a torsional critical speed occurs 
when the operating speed is equal to one of the torsional natural frequencies. On 

Fig. 17.    Model for pure tor- 
sional vibrations. 

•■;v^>;'^J;"-;?   ' 
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the other hand, the basic period of the external torque in an engine may be twice 
that of the shaft rotation, so that resonance will occur when the operating speed 
is equal tc twice the natural frequency. This is the case with the usual four- 
cycle, internal combustion engine. 

Reference to the linear instability of a shaft undergoing purely torsional 
vibrations does not appear in the literature. It would appear that such unstable 
modes of vibration, which can be predicted with the assumption of pure, un- 
coupled torsion, have not been encountered. Such problems could perhaps 
occur in the presence of electromechanical interactions such as occur in modem 
motor-driven systems. Certainly, unstable torsional motion can arise when there 
are feedback elements in the system. Moreover, when coupling exists between 
bending and torsion, unstable torsional motions can occur due to basically bend- 
ing instabilities, such as those arising from internal shaft friction. Finally, it also 
is true that instabilities exist, the basic character of which is different from those 
arising in either uncoupled bending or uncoupled torsion cases. Before consider- 
ing in more detail such additional instabilities, however, it is well to consider how 
such phenomena as critical speeds and natural frequencies are influenced by 
bending-torsion coupling. 

6.2 Coupled Critical Speeds 

Consider the coupled equations of motion lateral bending-torsion for an 
unbalanced disk at the center of an elastic shaft, where the shaft is not assumed 
to be rotating at a constant speed. If it is assumed that the instantaneous angular 
rotation rate Ü is given by a steady value n0 plus a small perturbation 0, then 
the linearized equations of motion in the coordinate system fixed to the shaft 
are written as follows: 

v + I — - n^jv - 2now = no
la + 2no0a, 

w + l--n0
2\w + 2n0v = -a«, 

/D0 - kaw + M» = T      =0. (6.3) 

Note that, for the moment, the applied torque is taken to be zero in developing 
these equations. 

The particular solution corresponding to the unbalanced force is assumed to 
consist of constants for v, w, and 0. Substitution into Eqs. (6.3) yields (since the 
first and second time derivatives vanish) 

'■■'■■■■= V;/1^.^:'; 
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^-^y0 = n0\ 

and 

wo  =0' 

0O = 0. (6.4) 

This shows that the classical critical speed is unaffected by the inclusion of tor- 
sional stiffness. That is to say, v0 stil! becomes very large at fl0 = y/kjm. 

It was mentioned earlier that for symmetric shafts the secondary critical 
speed due to gravity excitation is unimportant since, without asymmetry, there 
can be no resonance phenomenon at an operating speed near half the critical. 
Consider now how these conditions are affected by the coupling of bending and 
torsion. The equations of motion of the centrally located disk on a horizontal 
shaft (as expressed in the stationary frame this time) are given by 

my + ky = kacos{£l0t + (p) - mg, 

mz + kz = /casin(J20r +0), 

and 

Ip<t> + ^00 + Mj sin 0 - z cos 0) = 0- (6.5) 

if there is no imbalance (a = 0), the particular solution corresponding to the 
gravity loading takes the form 

^o 
_ -mg 

zo = 0. 

and 

<t>c =0. (6.6) 

Once again, if there is no imbalance, the result does not change from the pure 
bending situation. In any real system, however, there is always some imbalance. 
If a is not zero, it is necessary to consider its effects simultaneously with those 
of wig, since a contributes to the homogeneous part of the differential equations. 

Taking the gravity loading and imbalance into account simultaneously, the 
equations of motion in the rotating frame are the same as given by Eqs. (6.3) 



COUPLED BENDING AND TORSIONAL MOTION 57 

except for the addition of the terms mg cos (0 + Sl0t) and- mg sin (0 + ü0t) 
on the right-hand sides of the first and second equations in the set, re- 
spectively. 

It is convenient to introduce the complex notation M = v + /w, ü = v - jw. 
Then the equations of motion can be written as 

ü + ( n0
2JM + ISlrfu + 2n0a<j> + /a0 = 

n0
2a + ge-Wo' + O), 

and 

ka 
Ip<t> - ^("-") + V = 0- (6.7) 

The equations are further simplified by multiplying the first equation in Eqs. 
(6.7) by eM and dropping second order terms. Then, 

M + f — - n0
2) u + IüQI'ü + 2noa0 + /fl0 - /no

2fl0 = 

n0
2fl + ge-^o'. 

,) 

and 

ka 
Ip<t> -  yiu-ü) + M= 0- (6.8) 

To obtain the steady response due to gravity, it is logical to assume a solution 
of the form 

and 

u = Ae'^o* + Be'^o*, 

0 = /Ce/no' + jDe-i^o*, (6.9) 

where A, B, C, zn& D are real numbers. In order for this to be a solution, it is 
necessary that 
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(1-4^=0, 

m B + 4noaD = g, 

ka 
jifi-A) -(^-W)C = 0, 

ka ^(A-ny-ikt-ipüjv =o. (6.10) 

As long as J20
2 is not equal to fc/(4m), then the quantities A, B, C, and D are 

uniquely determined. 
It results then that 

u - v + jw = 
mg 

k 
(T-4 -/n0r 

¥*&¥) 
and 

0= Z^E sin ü0t 

UP -"»(-¥)] 
(6.11) 

The second equation shows that the torsional critical speed is given by 
n0

2 = k^lilp - 2ma2). The first shows that the force of gravity can excite a large 
bending deflection when the operating speed is close to the torsional natural 
frequency. However, this resonance is very sharp and local due to the 
similar behavior of the numerator and denominator (except in a very narrow 
range). 

The above solution breaks down if (4f20
2-fc/m) * 0, that is, where 

n0 ■ Vi^k/m , since then nothing can be said about the magnitude of A. One 
circumstance under which the assumed form of the solution would not be valid 
where ü0 - fty/k/m is if there is a natural frequency equal to Vis/kfm. 
It is this possibility which leads to the secondary critical speed due to gravity 
as described by Timoshenko [45], This is discussed further in the next 
section. 



COUPLED BENDING AND TORSIONAL MOTION 

6.3 Free Coupled Vibrations: Natural Frequencies 

59 

The coupled equations of motion without the forcing terms due to imbalance 
and gravity may be written as 

ii + 20,,/ H^-""2)" + a[2no^+/(0-no
20)] = o 

and 

-ka 
-^(u-U) + Ip<t> + V = 0- 

One can solve for the quantities u, u, and 0 with just those two equations, 
since the complex conjugate of the first equation also holds. That is, 

u - 2J20/M + [i -"«2)B + a[2no0-/(0-no
20)] = o. 

Solutions to this set are given by the exponential form 

and 

0 = 0oe 

which leads to the characteristic determinant 

Ar 

-X2 - 2n0x 

M o 7fl[2n0x-x2-n0
2] 

r 
-x2 + 2n0x 

—-i- 
-ka 

T 
ka_ 
2/ 

/a[2n0X + X2+I2^] 

-/„X2 + k<t) 

= 0. 

— i,„    ■'. T ,■' ■ ?! ,  

''''-', 
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Solving for the eigenvalues \ yields all the natural frequencies as a function of 
the operating speed n0. 

Of particular interest is the case where the operating speed is given by 

"o = ivf 
It is possible to show that, under these conditions, two of the six. characteristic 
values of X are given by \ = ±n0 , so that vibrations occur with the form 

u = u0e i/iV = u0e- 

6.4 Effect of Torque Loading 

In a practical shaft system, it is usually very difficult to describe the applied 
torque or the instantaneous angular operating speed as an explicit function of 
time. It is normally assumed that the operating speed is constant. In the fore- 
going analysis it was assumed that the torque was ztro. Attempts to improve on 
these approximations variously assume that the applied torque is proportional 
to the instantaneous operating speed or that speed, acceleration, and torque are 
all coupled by the characteristics of the motor. 

The effect of a purely pulsating torque is interesting because its presence can 
be induced by electrical components. To demonstrate its effect on the simple 
system used as an example in the preceding sections, it is only necessary 
to look at the particular solution of the set of Eq. (6.3) corresponding 
to an oscillatory torque loading in the moment equation. The imbalance 
again serves to couple the system, so that the oscillatory torque excites lateral 
vibrations. 

6.5 Instabilities 

Tondl [9] has produced analytical results which show that instabilities can be 
introduced by the mutual interaction of torsional and flexural vibrations. The 
particular system examined was a two-mass system composed of a turbine and a 
generator acted on by a driving moment, viscous drag moments, and a synchro- 
nizing torque. Gyroscopic terms were neglected, so that the complete set of 
governing equations are similar in form to Eqs. (6.3). Naturally, there are equa- 
tions for each mass, and these are elastically coupled. After performing ex- 
tensive algebraic manipulations in which series solutions were found in 
the form of expansions in powers of the imbalance, Tondl came to the con- 
clusion that intervals of instability can be found in the range of operating 
speeds given by 

n = |w„r± oinb\,2u3„T, 
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where 

u„T are the natural frequencies 01 torsional vibrations 

w„ft are the natural frequencies of flexural vibrations. 

If, as in many practical systems, the torsional natural frequencies are very 
much higher than the bending frequencies, and if operation is limited to the 
lower critical speeds, then certainly one does not have to worry about the above 
unstable ranges, since 

& - Unb and w„r » unb. 

On the other hand, designers (of power transmission shafts, for example) 
strive for higher speeds to reduce the torque required for a fixed amount of power. 
This, coupled with weight and size limitations, leads to operating speeds in excess 
of first, second, or even fifth or sixth critical, so that the importance of the 
mutual interaction of bending and torsional vibration is substantially increasing. 

Regimes in which the flexural and torsional natural frequencies are of the 
same order become especially crucial, since regions of instability may then merge 
and overlap. 

Unlike the instabilities discussed in preceding parts of the monograph, such 
as those due to asymmetry or internal damping, those due to coupled bending 
and torsion are affected by the degree and location of imbalance. In fact, as has 
been pointed out earlier in this chapter, if the equipment is perfeclty balanced 
there may be no coupling between bending and torsion at all, as long as the as- 
sumptions of a linear system are made. 

It follows, then, that the widths of the unstable regions decrease continuously 
to zero as the imbalance is reduced. This fact alone offers good reason for care- 
ful balancing when a system must operate in the regime of the torsional natural 
frequencies. 

As in other types of shaft instability, a sufficient amount of external damping 
also serves to narrow, or eliminate altogether, the unstable regimes associated 
with the combined flexural and torsional stiffness. 

One final word with regard to coupled bending-torsion instabilities. A centrif- 
ugal pendulum, mounted on a rotating part and tuned to some particularly 
troublesome exciting frequency, has been used as a dynamic absorber to reduce 
vibrations in rotating systems. The motions of such a seismic mass, in a plane 
normal to the shaft center line, are analogous to torsional motions. If such de- 
vices are disposed without polar symmetry about the shaft axis, their response 
will couple lateral bending and torsion motions. Most important, however, they 
can give rise to a separate class of linear instabilities which can exist in the 
absence of imbalance, damping, and asymmetry. The corresponding theory has 
been well developed (for helicopter rotors) by Coleman [37] and shows that 
instability is precluded if the natural frequency of the centrifugal pendulum, as 
measured in the rotating system, is higher than rotational speed. 

TTS 
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CHAPTER? 

BALANCING 

Operating speed is always an important parameter in deciding the degree to 
which a rotating system must be balanced. Historically, the procedures for 
balancing evolved as the need arose for higher and higher speed machines. For 
high speed machines, of course, even a small geometric imbalance may cause a 
large oscillatory force to be transmitted to the supporting structure. 

The most direct unfavorable effect of imbalance is th? initiation of oscillatory 
loads on supports. If the imbalance is relatively small, the consequences may still 
be important from other viewpoints; for example, noise transmission. If the im- 
balance is large enough there is the possibility of fatigue failures in the rotating 
shaft or premature bearing wear and seizure. Generally speaking, the more accu- 
rately balanced the shaft system, Ihe smaller will be the vibrations and dynamic 
reactions in the supports; hence, the longer the component life of the system. 

For machines which operate sufficiently below the first critical speed, shafts 
may usually be considered rigid. The advent of high speed systems, especially 
those operating above the first critical, has made it necessary to consider the 
flexibility of the shafts in the balancing process. For many applications, 
especially modern gyroscopic instruments and devices, it has become necersary 
to take into account the gyroscopic effect of the rotating parts. 

7.1 Three Classes of Imbalance: Static, Dynamic, and Flexible Shafts 

Static imbalance is the term used to describe the offset of the center of gravity 
of a rotor from the axis of rotation, where the principal axis of inertia of the 
rotating body is still oriented in the same direction as the axis of rotation. Such 
would be the case, for example, if a perfectly massless shaft were carrying a disk, 
mounted perpendicular to the shaft but offset a certain amount (Fig. 18). 

Dynamic imbalance is the term used to describe the angular misalignment of 
the principal axis of inertia of the rotating body with respect to the axis of rota- 
tion. An example of purely dynamic imbalance is shown in Fig. 19, where a disk 

rz 
mKKW 

Fig. 18. Static imbalance. 
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Fig. 19. Dynamic imbalance. 

is mounted on a massless shaft so that the plane of the disk is not perpendicular 
to the shaft axis, but the center of gravity of the disk lies on the shaft axis. The 

action of centrifugal force is such that 
a force perpendicular to the rotating 
shaft results from static imbalance and 
a moment perpendicular to the rotating 
shaft from dynamic imbalance. It is 
clear that both effects cause forces to 
be applied to the bearings. 

In the general case, both static and 
dynamic imbalance are always present to 

some extent due to manufacturing tolerances. Given a rigid shaft which is both 
statically and dynamically out of balance it is always possible, in principle, to 
balance the system for all speeds by placing weights in each of two arbitrarily 
chosen cross-sectional planes. When a rotating shaft is operating at speeds in the 
vicinity of first critical and higher, it is usually no longer possible to neglect shaft 
flexibility, and perfect balance then requires an infinite number of shaft stations 
in the most general case. The following paragraphs attempt to review the 
procedures used in practice. 

7.2 Balancing Methods and Theory 

Static Balancing 

Pure static imbalance can be detected without rotation of the rotor. If, for 
example, a statically unbalanced shaft (with concentrically round surfaces) is set 
across two perfectly level, flat, and parallel blades, the shaft will roll until the 
center of mass is at the lowest possible point. Mass is added to the shaft 180° 
away from the imbalance until the shaft will not roll on the blades, regardless of 
the position from which it is started. The accuracy of this static balancing 
method is limited by the rolling friction between the blades and the rotor. For 
small rotois it is sometimes convenient to mount the shafts in holders that have 
their own ball bearings. The accuracy is then limited by the friction in the ball 
bearings rather than friction between rotor and rails. In either case, friction ef- 
fects may be reduced by introducing low-level vibrations to the supporting base. 

The theory of pure static balancing is, of course, very simple. Given a rigid 
rotor, the center of gravity of which is not on the axis of rotation, it is only 
necessary to add one mass in order to balance the rotor. The unbalanced shaft 
has the following values for the position of the center of gravity (see Fig. 20): 

* = 0, 

y = e 

z = 0. 
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X 
Fig. 20. Static balancing model. 

The center of gravity, with an additional mass m added on the surface of the 
shaft 180° away, is given by 

x = z = 0 

and 

y = 
(Af e - mr) 
(m+Af) ' 

where M is the original mass. If mr= Me, the shaft will be statically balanced. 

Dynamic Balancing 

Dynamic balancing is commonly carried out by mounting the rotor on the 
mobile platform of a balancing machine. When the rotor is rotated, the platform 
vibrates due to the imbalance. The location and magnitude of the required 
balancing weights is determined by measuring the amplitude and phase of the 
platform vibration. 

The basic components of a dynamic balancing machine are 
• A mechanical platform assembly which permits the necessary degrees of 

freedom of the rotor, 
• A drive system which imparts a definite speed of rotation to the rotor, 
• Measuring devices to accurately detect the motion of the platform, and 
• An accurate device for adding or removing material at a definite place on 

freedom of the rotor. 
The mechanical resonance of the platform assembly can be used to advantage 

in amplifying the motion caused by the imbalance. Many measuring devices for 
detecting the amplitude and phase of the mobile platform are optical. 

Three different variations of dynamic balancing machines of the resonance 
type which were widely used in the 1930's were discussed by Timoshenko [45]. 
The advantages are simplicity, reliability of operation, and relatively modest cost. 
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Some disadvantages are low productivity, diTiculty in balancing the rotor in its 
own bearings or housing, and difficulty in automating the balancing process. 

More highly productive or automatic machint* do not depend on resonance 
for amplification but, rather, on highly sensitive electrical methods of measure- 
ment. In fact, some machines have fixed rather than mobile supports, where 
measurements are based on the dynamic force reactions. 

One way to express dynamic balance theoretically is to state that, for a rigid 
rotor (rotating about, say, the z axis), the cross products of inertia must equal 
zero. That is. 

Itx = Iyi = 0. (7.1) 

If this is true and the x and y coordinates of the center of mass are also zero, 
that is 

x = J^ = 0, 

then the rotor is both statically and dynamically balanced. 
It should be emphasized that by balancing rotors on machines intended for 

dynamic balancing, static and dynamic imbalance are removed simultaneously. 
The mass products of inertia, Izx and IZy, are given by 

Jv 
Izx -  I zxdm 

and 

Jv 
yzdm. (7.2) 

where dm is an elemental mass {dm = pdr) of the body, and the integration is 
carried out over the entire volume of the body. 

If the rotating body is made of a perfectly homogeneous material, then p is 
constant over the volume T. The quantities Izx and IZy then equal zero, pro- 
vided that the rotor is symmetrical with respect to a plane normal to its axis of 
rotation. 

If the rotor in question is a perfectly straight circular cylinder, such a plane 
clearly exists, and there is no dynamic imbalance. If the shaft center line were 
slightly bent into an arc symmetrical about the normal to the shaft midstation, 
the shaft would be statically out of balance but not dynamically, as can be seen 
from the symmetry argument. On the other hand, if it were bent so that there 
was no symmetry about the orthogonal midstation plane there would be dynamic 
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imbalance as well. Any inhomogeneity would also cause dynamic imbalance 
(even if the shaft were perfectly slraight and circular) unless the density distribu- 
tion were again symmetrical with respect to the dividing plane. 

If a rigid rotor is dynamically out of balance, it is possible to balance it by 
adding two correcting weights in two arbitrarily positioned planes, called correc- 
tion planes, normal to the axis of rotation. The two correction planes are located 
at z = Z! and z = Z2 (Fig. 21). The correction masses are denotedasmi and mj, 
and have coordinates (xi,.Vi, Zi) and fo, J2. ^2) respectively. If the original 
unbalanced shaft had mass M and cross products of inertia /. 
new cross products of inertia, with the correction mass added, are 

:iX and/^, then the 

and 

.new _   r       . , 
'xi       hx + m\X\Zi + miXfa 

new s 
1zy        'yz + mtfxZx + m2y2zi. (7.3) 

PLANE 1 

Fig. 21. Conection planes. 

The new center of mass is defined by 

—new _ Mxc + m^t + w2X2 
Af + mi +«12 

and 

-new _  Myc + m^i  + m2>'2 
^ + wij + m2 

(7-4) 
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To have the rotor both statically and dynamically balanced, it is necessary 
that 

mixi + m2xx ~ ~Mxc, 

Wi^i + ni2y2 = -Myc. 

ZximxXi) + 23(^2X2) = -Ixz, 

(7.5) 

and 

zx{myyx) + 22(^^2) = - /yz. 

Equation (7.5) constitutes four independent equations for the four unknowns 
{mxX\), (/W2X2), (wiV]), and irn^y^)- Since only the products of mass and co- 
ordinate are important, it is possible to use standard correction masses, with the 
coordinates determined by the equations. Note, too, that the masses may be 
negative quantities-obtainable, for example, by removing material from the 
disks attached to the shaft. 

For the removal of an imbalance caused by manufacturing inaccuracies, the 
above analytical formulas are not directly useful because it is difficult to deter- 
mine xc, yc, Ixz, and IyZ experimentally (without already having balanced the 
shaft). The formulas only prove that it is possible to balance the shaft by using 
two masses. 

On the other hand, a rotating shaft may be required to carry cams or gears, 
which can cause a gross imbalance that is independent of manufacturing accuracy. 
In that case, the original center of mass and the products of inertia may be calcu- 
lated in a straightforward way so that all the information is available to balance 
the system to within normal tolerances. 

Flexible Shaft Balancing 

When operational requirements demand that shafts be operated at speeds in 
excess of the lowest natural frequency, it is no longer adequate to regard the 
shaft as rigid for balancing purposes. The true position of the mass center of a 
flexible shaft, as well as its instantaneous cross products of inertia, will generally 
be different for each operating speed. It is thus impossible to be perfectly 
balanced for all speeds. This largely accounts for the fact that rotors balanced 
on a balancing machine are often no longer balanced when they are operating in 
their own bearings and at a different speed than that of the test machine. In fact, 
by placing masses in two different planes, a flexible rotor can at best be balanced 
for one speed. 

The most widely discussed procedure for balancing flexible rotors is based on 
the idea of balancing rotors according to their particular vibration modes. In the 
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United States, Den Hartog [46]; in the Soviet Union, Dimentberg [5] and 
Kushul' [47]; and in Britain, Bishop [48] and Parkinson [49] have all been 
strong proponents of this idea, and it has received wide acceptance. 

The theory supporting this modal balancing technique is usually developed on 
the assumption that the rotary inertia effects of shaft cross sections, as well zs of 
attached disks, may be neglected. The immediate consequence of this assump- 
tion is that the natural vibration frequencies and mode shapes of the rotating 
shaft are the same as those of the stopped shaft. This assumption need not be 
made, however, in view of the power of modern computing methods, and in 
principle, accounting for rotary inertia effects is straightforward. The change of 
mode shapes with operating speed, however, probably means that "balance" 
would have to be sought with some preconception of weighting one operating 
speed vs others. 

The modal balancing theory was first developed by completely symmetrical 
systems. Bishop and Parkinson have since extended the purely modal analysis to 
balance shafts which are either axially symmetric operating in asymmetric bear- 
ings or nonaxially symmetric operating in symmetrical bearings. However, it is 
evidently still relatively unknown what effect modal balancing has if gyroscopic 
mass effects do occur. 

The fundamental aspect of the modal balancing technique is the use of natural 
vibration modes as generalized coordinates. The orthogonality of the modes 
makes it possible to obtain completely uncoupled equations for the response in 
each mode due to the imbalance. Correction weights are added in sequence to 
successively balance out the reactions corresponding to the lower modes; if such 
weights may be considered small, first order quantities, the modes may be as- 
sumed to be not fully coupled by the additional mass. 

It has recently been pointed out by Den Hartog [46] and Kushul' [47] that 
a pure modal balancing technique may not always guarantee quiet operation at 
the required range of operating speeds, even if gyroscopic moments are com- 
pletely negligible. Concentrated imbalances are often associated with this diffi- 
culty. At its source is the fact that the generalized unbalanced force, which is 
weighted by each particular modal deflection shape, appears in each modal 
equation as the (only) driving function in normal mode analysis. If the imbalance 
distribution has sharp variations or if it is shaped-by coincidence-very much 
like the deflection shape of one of the higher modes, the generalized forces which 
excite the higher modes may be large enough so that, unless those modes are 
also included in the balancing procedure, the dynamic bearing reactions may still 
be large. In other words, a modal balancing technique using only the lower 
modes is satisfactory only if the harmonic content of the imbalance distribution 
is not too great. 

Some approaches taken to eliminate difficulties associated with balancing by 
harmonics are known as combined methods of balancing. One of these is based 
on the following theorem due to Den Hartog [46]. A massless flexible rotor 
carrying (or representable by) r concentrated masses, supported on b bearings. 
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; 

with an imbalance, regardless of its distribution, can be completely balanced by 
weights distributed in n = r + fc different planes along the rotor length. Complete 
balancing is defined here as that which results in no dynamic reaction in any 
bearing at any operating speed. This theorem holds provided that (a) the un- 
balanced masses are small compared to the total mass of the rotor, and (b) that 
flexure due to the imbalance is small compared to the eccentricities of the 
static imbalance. 

Another combined approach to the balancing of flexible shafts has been 
developed by Kushul' [47]. In at least some cases, the approach of Kushul' may 
give better results than that of Den Hartog. In general, it may be stated that the 
combined methods of both Den Hartog and Kushul' can be much more effective 
at reducing the reaction forces at supports than the older methods. This is 
especially true if there is a practical limitation on the number of correction 
weights which may be used. The theoretical basis of both methods is presented 
in Ref. 47. That reference also gives some simple numerical examples that 
illustrate the differences in methodology and performance of the purely harmonic 
and combined approaches. 

One point deserves emphasis. Even the most exact balancing procedure does 
not eliminate the fact that a rotor has flexibility, mass, natural frequencies, and 
possibly instabilities. All balancing is directed at minimizing the forced response 
due to geometric imperfections or material inhomogeneities. No matter how 
well a shaft is balanced, it can still experience vibration and transmit oscillatory 
forces at the supports if the natural vibration modes are excited by a source other 
than mass imbalance. 

The consensus regarding the state of the art and future of flexible rotor 
balancing seems to be that the combined methods of balancing have given the 
best results and that continued development of the theory along those lines is 
justified. In particular, a theory for balancing flexible rotors which have signifi- 
cant gyroscopic moments in the system remains poorly developed. 

7.3 New Concepts in Automatic and Self-Balancing 

The best balancing procedures for flexible shafts generally are aimed only at 
operation in a small range of speeds. Furthermore, as the name balancing im- 
plies, these approaches are directed at reducing steady deflections in the rotating 
system arising from Intrinsic mass imbalance. Since correction weights are always 
fixed to the shaft, they hardly can be expected to reduce other than once-per- 
revolution disturbances as measured in a stationary coordinate system, and 
certainly not random excitations. 

One of the most promising areas of research for balancing is the use of 
correction weights which are not fixed to the shaft but, rather, are free to rotate 
with respect to the shaft. Self-balancing devices which are based on this principle 
have been used in washing machines, food blenders, automobile wheels, and more 
recently helicopter rotor shafts [50]. In all cases, at least two freely swinging 
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weights or spheres which are free to ride in an annular track are allowed to 
rotate with the shaft and to take equilibrium azimuthal positions. For operation 
below critical speed, the added weights aggravate the imbalance but, for super- 
critical operation, the free weights tend to reduce the shaft deflections to zero. 

The principle upon which these self-balancing devices are based is a well-known 
phenomenon which is evidenced by the simple case of an unbalanced disk at- 
tached to the center of an elastic shaft, discussed in Chapter 4. A free mass will 
always seek the maximum radius. Consequently, below critical speed the free 
masses will move to a radius which is greater than that of either the shaft center 
line or the center of mass. Above critical speed, however, the free mass will 
move to a position diametrically opposite the center of mass, i.e., with respect 
to the shaft center line. Therefore, above critical speed the combined center of 
mass will move toward the shaft center line and hence reduce the net imbalance. 
These conditions are shown in Fig. 22. 

(b) 

FREE 
MASSES 

f 

CM 

SHAFT 
-CENTER 

LINE 

BELOW CRITICAL, FREE ABOVE CRITICAL, FREE 
MASSES INCREASE DEFLECTION  MASSES DECREASE DEFLECTION 

Fig. 22. Self-balancing. 

Other configurations are being investigated for helicopter applications [50], 
wherein the track that the rotating masses ride in is itself geared to rotate at a 
different speed than the shaft, and even in the opposite direction. In this way it 
may be possible to reduce vibrations at other harmonics. 

It is interesting to note that the idea of such a self-balancing device was con- 
ceived as early as 1900 by Leblanc (see Ref. 46). 

The success that has been achieved with such self-balancing devices suggests 
that more research should be undertaken in this area. While progress is being 
made in developing working models for helicopter applications, there seems to 
be little corresponding analytical work under way to further the understanding 
of those systems. Analyses of the passage through critical and response to dis- 
turbances are particularly difficult because of their nonlinear nature, but they 
should nevertheless be pursued, since the real advantage of such devices may lie 
therein. 
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CHAPTER 8 
CONCLUSIONS 

The literature dealing with the subject of rotating shaft dynamics is large, 
growing, and diverse. This diversity reflects the variety of machines in which rota- 
tion is a fundamental mode of operation. 

A literature review suggests three trends. For one, methodology is unquestion- 
ably becoming more sophisticated. While a natural trend in any field, a driving 
force here has been the ever-increasing speeds of rotation. Second, the broader, 
more general treatments of the subject continue to deal with simpler systems and 
more theoretical analyses. Third, the more complete treatments usually apply to 
specific configurations; hence they are relatively narrow in application and rely 
frequently on large-scale digital computers and numerical methods of analysis. 
This last is hardly unexpected-particularly if one contrasts the differences be- 
tween, say, high speed gear trains and large, overhung mixers. It is unfortunate, 
however, and a trend with which researchers in this field should not be content, 
since understanding is always enhanced by the ability to generalize. 

A general assertion might be cautiously attempted regarding the collective 
characteristics of the many authors who have contributed to the field. Authors 
outside the United States (who contributed about half ot.r literature) attacked 
the same problems as those in this country. In doing so, however, they generally 
seemed to take a more traditional, theoretical approach toward solution, one 
involving much labor. Authors in the United States, in general, seem to have 
taken, most often more straightforward, brute-force approaches. This may sim- 
ply reflect what has been until now the large difference in available digital com- 
puting power in the United States as compared to other countries. 

Except for people of high stature and experience (like Dimentberg, Tondl, 
and many others), the literature abounds with indications of confusion among 
such differing phenomena as natural frequencies, critical speeds, instabilities, and 
gyroscopic and rotary inertia effects. It is hoped this monograph will help elimi- 
nate some of the confusion. 

Some conclusions can be stated regarding critical speeds based on linear the- 
ory. First, critical speeds may legitimately be classed as resonances since they 
involve amplitudes which are predicted to increase linearly with time to infinite 
amplitudes in the absence of damping, at discrete operating speeds; this despite 
the fact that stresses and motions as sensed in the rotating system may be non- 
oscillatory. Constant (compressive) axial force and torque generally lower criti- 
cal speeds. Gyroscopic effects increase or decrease critical speeds, depending on 
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operating speed, size, disk geometry, and disk location. The natural frequencies 
of rotating shafts are speed-dependent because of rotary inertia; this is also one 
effect that differentiates critical speeds from nonrotating natural frequencies. 
Transverse shear is reported to affect critical speed when the diameter is as small 
as one-hundredth of the length; the influence increases with the ratio of diameter 
to length. It is noted that this presumes a certain ratio of material shear to bend- 
ing modulus. If more unusual materials find use in rotating machinery, this 
threshold may be quite different. The presence of asymmetry, in either the ro- 
tating or nonrotating frame, generally doubles the total number of critical speeds 
compared to the fully symmetric case. Asymmetry in both frames generally 
quadruples the number of critical speeds. Additional critical speeds exist when 
degrees of freedom are added, such as degrees of freedom of the supporting 
structure. 

There is a dearth of experimental verification concerning the existence of re- 
verse precession, which is one of the kinds of critical speed theoretically predicted. 
The embryonic state of nonlinear vibration theory, in general, hinders under- 
standing such phenomena as they occur in rotating shafts. Among the sources of 
nonlinearities in practical systems are oil films in journal bearings, structural 
restoring forces, bearing clearances, magnetic forces between rotor and stator, 
faulty mountings, shrink fits, and deformations of ball-bearing races. In general, 
nonlinearities introduce additional resonances, such as subharmonics of reso- 
nances which degenerate to critical speeds in the linear case. 

There are six standard methods for predicting critical speeds. The Rayleigh 
method is only good for the first natural frequency (rotational dynamics are usu- 
ally not included). The Ritz method is an improvement ^ that higher modes are 
determined. The transfer-matrix approach yields all (i;near theory) critical 
speeds to any desired degree of accuracy and is especially suitable for machine 
computations. The force and displacement or other methods leading to a matrix 
of influence coefficients and a dynamic matrix are also good for linear systems. 
They do require the manipulation of high order matrices, are somewhat more 
complex in the formulation, and require a larger computer capacity. They will, 
however, generally require less machine time. The choice between the dynamic 
matrix and the transfer-matrix formulas are generally only good for first approxi- 
mations. Impedance-matching methods have been successful. 

An instability, as distinct from a resonance, occurs when deflections grow 
exponentially with time regardless of applied forces; instabilities will usually 
exist over a range of operating speeds. A number of physical characteristics are 
important to the stabilities of a rotating system, e.g., internal friction, asymmetry 
of the rotating parts, bearing lubricants, and nonlinearities. The onset of an in- 
stability is dependent on the ratio of internal damping to external damping, rather 
than the magnitude of each. The assumptions of simple, linear internal friction, 
which are usually made, will not give a true picture of either the instability range 
or the finsl amplitude. The air.aunt of instability due to internal friction is not 
generally independent of the imbalance or the orientation of the shaft, since 
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internal friction usually is nonlinear with amplitude. Probably the most frequent 
source of instability is the action of a journal in its bearings. 

There are four established methods for mathematically predicting the existence 
of instabilities: the Routh-Hurwitz criterion, direct numerical time integration, 
the generalized Hill's method, and asymptotic methods. Each has advantages and 
disadvantages. The problem is often complicated mathematically by the existence 
of periodic coefficients in the equations of motion. The Routh-Hurwitz criterion 
does not provide any knowledge of the behavior of the motion, the deflection 
shape and its growth rate if the system is unstable, and not much of an idea of 
the margin from instability if the system is stable. Conversely, direct numerical 
time integration gives little insight into the physics of the problem. The general- 
ized Hill's method faces periodic coefficients directly but is limited by the need 
to deal with infinite determinants, which obviously must be approximated in 
practice. Asymptotic methods sometimes suffer from the need to identify a cru- 
cial parameter which may be considered small with respect to others; this may or 
may not be reasonable in particular cases. 

Experimentally observable frequencies Oi system forced response will depend 
on the observer's frame of reference (i.e., fixed or rotating frames). The response 
may well be larger for vibrations at a frequency other than the forcing frequency. 
For example, with gravity as the forcing function (zero forcing frequency in the 
fixed frame) the response can be greater at a twice-per-revolution frequency 
than at the zero forcing frequency (static deflection). 

There have been few analytical studies of the transition-through-critical prob- 
lem. Those have been restricted to the simplest configurations and have usually 
disregarded torque—angular velocity relations. An accurate picture requires con- 
sideration of the latter; constant acceleration assumptions are valid only foi ade- 
quately small ranges of investigation. Damping has the effect of reducing the 
maximum amplitudes that arise during transition. 

The mutual interaction of lateral and torsional motion becomes important for 
supercritical speeds, especially when small-diameter shafts are involved, and for 
investigating the influence of torque loading. The literature is devoid of refer- 
ences treating the linear instabilities of a shaft undergoing purely torsional vibra- 
tions. For the case of coupled bending and torsion, one can obtain unstable tor- 
sional motion due to basicallv bending instabilities. Coupled theory predicts 
additional instabilities that are not predicted by uncoupled theory. 

Generally speaking, the more accurately balanced the shaft system, the smaller 
will be the vibrations and support reaction. For high speed machines (working 
above first critical), shaft flexibility must be considered in the balancing process. 
For even higher speeds, it is also necessary to account for gyroscopic effects. 
The classical idea of static and dynamic balancing is tied to the concept of rigid 
rotating parts. Both are achieved by machines designed for dynamic balancing: 
the converse is not true. All balancing is directed at minimizing the forced re- 
sponse due to geometric imperfections or material inhomogeneities. However, 
no matter how well balanced, a shaft can still experience vibrations and transmit 
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oscillatory forces to the supports if natural vibration modes are excited by any 
source. So-called combined methods of balancing seem to give the best results. 
Continued development of the theory is justified; in particular, the theory for 
balancing flexible rotors that have significant gyroscopic moments remains an 
area worthy of increased attention. It is also necessaiy to improve methods for 
measuring the responses due to imbalance so that full advantage can be taken of 
the advances in the theory which are certain to come. One of the most promis- 
ing areas of balancing research is in the use of correction weights which are free 
to rotate with respect to the shaft. Methods for predicting response while pass- 
ing through critical and in the presence of transient disturbances are important to 
realizing the full potential of such devices. 
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effect of, 17 
Rotating 

asymmetry, 16,19-20, 36 
coordinates, 45,50 
natural frequency, 7, 25 

Rotor asymmetry, 35 
Rotors 

flexible, 68, 70,76 
helicopter, 61 
incorrectly balanced, 14 
unsymmetrical,45 
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Routh-Hurwitz criterion, 37-39, 
4142,75 

Runge-Kutta scheme, 43 
Schematic linear spring, 10,11,12,21 
Secondary critical speed, 16 
Self-balancing, 70-71 
Self-excited vibrations, 14,38 
Shaft 

anisotropic, 35 
deflection, 45 
elastically isotropic, 33 
flexibility, 10,15, 75 
helicopter rotor, 70,71 
imbalance, 63-64, 66,70 
massless, 35 

elastic, 16,20,25,33-35,38, 
47,52,64 

motion unstable, 25,37 
slotted, 42 
static dynamic, 63-64, 66, 68,70 
stiffness, 35,47 
supercritical speed, 53 
unbalanced, 65 
undamped, 52 
whipping, 32,37 

Shaft damping, 11 
lateral, problems, 15 

forced bending, 45 
instability, 13 

prediction of, 39 
linear effects, 17 
mathematical foundations, 25 
nonlinear effects, 20 
prediction methods, 21 
transition through critical, 45,47, 

52, 75 
unstable motion, 31 

Shear 
deformation, 19 
force, 33 
material, 74 
transverse, 74 

Sinusoidally varying force, 5 
Slade.J.J., [II] 20 
Slotted shaft, 42 

Smith,D.M., [\Q\ 19, [26] 34 
Southwell, R. V., [6] 17 
Speed 

classical critical, 27, 56 
coupled critical, 2, 55 
critical, 5,7, 8,10,16, 20-23, 25, 

27,28,32-33,35,45,71,73,74 
critical whirling, 15 
secondary critical, 16 
supercritical, 28-29,53 
threshold, 33 
torsional critical, 54, 58 

Springs, schematic linear, 10,11, 12, 
21 

StabUity 
analysis, 42 
boundaries, 41 
criteria, 39 

Static 
balancing, 64,75 
deflection, 75 
imbalance, 63 

Statically divergent instability, 7 
Stationary coordinates, 45,49 
Steady torque, 17 
Stiffness, 16,20 

Isotropie, 16 
shaft, 35,47 
support, 32, 39 

Stress 
cyclic, 14 
nonoscillatory, 13 
oscillatory, 30-31 

Structural damping, 10, 11 
Subharmonic resonance, 21 
Supercritical speed, 28-29, 53 
Superposition principle, 20 
Supports 

anisotropic, 35, 52 
flexible, 8 

Symmetric rigidity, polar, 10 
Symmetry, 14 
Synchronous whirl, 39 
Taylor, H. D., [29] 37 
Threshold speed, 33 
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Timoshenko.S.. [45] 58,65 
Tondl,A., [9] 18,20,33,38,44, 

60,[15] 20 
Torque, 46,48-49,54 

axial, constant, 16,17,73 
oscillatory, 17, 60,75 
periodic, 54 

loading effects of, 59 
pulsating, 16,54,60 
steady, 17 

Torsion coupling, bending, 55 
Torsional 

critical speed, 54, 58 
motion, 25, 53, 74 
natural frequency, 61 
vibrations, 53-55,60-61 

Transfer matrix approach, 22, 74 
Transition 

critical speed, 52 
deflections, 52 
effect of damping, 52 
response, 46 
through critical, 45,47, 53, 75 
through secondary critical speed, 52 

Transverse 
angular deflection, 17 
angular velocity, 17 
excitation, 12 
inertia, 18 
shear, 74 

effect, 18 
Unbalanced shaft, 65 
Uncoupled 

theory, 75 
torsional natural frequency, 54 

Undamped 
motion, 25 
natural frequency, 9 
shaft, 52 

Unstable 
shaft motion, 25, 37 

causes of, 31,32 
whirl, 32 

Unsymmetrical rotor, 45 
Velocity 

angular, 18, 33, 38,45,47-48, 75 

Velocity (continued) 
critical, 15 
linear, 33 
transverse, 17 

Vibration modes, 17 
Vibrations, 5,12 

backward, 12 
flexural, 60-61 
forced, 45 
free, 30, 32, 35 
lateral, 60 
natural frequencies, 59 
nonlinear, 20 
nonlinear theory, 74 
reverse, backward, or retrogressive 

mode, 12 
self-excited, 14,38 
torsional, 53-55,60-61 

Vibratory resonance, 13 
Viscous 

damping, 16, 52 
friction, 34, 38 
incompressible lubricant, 38 

Weights, correction, 70, 76 

Whip, oil, 37 
Whipping, shaft, 32, 37 
Whirl, 10,12 

backward, 12,16 
circular, 11, 13 
forward, 12, 16 
nonsynchronous, 33, 39 
progressive-regressive, 12 
reverse, 16 
synchronous, 39 
unstable, 32 

Whirling 
divergence, 9 
harmonic, 38 
synchronous, 39 

Willems. N.. [8] 17 
Yamamoto, T., [13] 20, [28] 35, 

[39] 45 
Zero 

damping, 51 
frequency, 13,15, 75 
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